New developments in few-nucleon scattering

M. Viviani

INFN, Sezione di Pisa

INT workshop
“Weakly Bound Systems in Atomic and Nuclear Physics”
March 8, 2010
Outline

1. Introduction

2. Scattering calculations with the HH method ($A \leq 4$)

3. Integral relations

4. Conclusion
Collaborators

C. Romero-Redondo, E. Garrido & R. Alvarez-Rodriguez - *IEM, Madrid (Spain)*

P. Barletta - *UCL, London (UK)*

A. Kievsky, L. Girlanda, L.E. Marcucci - *INFN & Pisa University, Pisa (Italy)*
Weakly bound systems in nuclear physics

“Few-nucleon Physics”:

- $A \leq 4$:
 - NN/3N forces & Weak/EM currents by EFT
 - Solution of $H\psi = E\psi$: quite accurate
 - First part of the talk: “recent results using the HH method”

- Problems:
 - A_y “puzzle” in $N - d$ and $p - ^3\text{He}$ (see later)
 - Several problems in $N - d$ breakup and $A = 4$ scattering
 - Goal: NN/3N/4N observables \leftrightarrow EFT

Weakly bound systems: $A > 4$:

- Extension of the numerical methods very difficult
- Many of these systems are unbound \leftrightarrow need for scattering calculations
- Second part of the talk: “Integral Relations”
Weakly bound systems in nuclear physics

"Few-nucleon Physics":

- $A \leq 4$:
 - NN/3N forces & Weak/EM currents by EFT
 - Solution of $H\Psi = E\Psi$: quite accurate
 - First part of the talk: “recent results using the HH method”

- Problems:
 - A_y “puzzle” in $N - d$ and $p - ^3\text{He}$ (see later)
 - Several problems in $N - d$ breakup and $A = 4$ scattering
 - Goal: NN/3N/4N observables \leftrightarrow EFT

Weakly bound systems: $A > 4$:

- Extension of the numerical methods very difficult
- Many of these systems are unbound \leftrightarrow need for scattering calculations
- Second part of the talk: “Integral Relations”
NN & 3N interaction

NN potentials

- "Old models": Argonne V18, CD-Bonn, Nijmegen ($\chi^2 \approx 1$)
- Fit of 3N data using non-locality in P-waves (ISuj [Doleschall, 2008])
- Effective field theory
 - J-N3LO [Epelbaum and Coll, 1998-2006]
 - I-N3LO [Entem & Machleidt, 2003]
- Low-q interaction [Bogner and Coll., 2001-2007]

3N potentials

- Effective field theory
 - J-N2LO [Epelbaum et al, 2002]
 - N-N2LO [Navratil, 2007]
- Illinois [Pieper et al, 2001]
- Under progress: N3LO, Δ, CSB, ...

Models under study: I-N3LO, AV18, I-N3LO/N-N2LO, AV18/UIX.
Study of the dynamics of 3 and 4 nucleon systems

\[H = \sum_i \frac{p_i^2}{2M} + \sum_{i<j} V(i,j) + \sum_{i<j<k} W(i,j,k) + \ldots \]

Search for accurate solution of \(H\psi = E\psi \)

- Expansion of \(\psi \) on the basis of **Hyperspherical Harmonics**
- Problems: 1) convergence 2) antisymmetrization of the basis 3) boundary conditions for scattering states, \ldots
- **Accurate, state-of-the-art**, calculations of bound and elastic observables
- Treatment of non-local or projecting potential possible
- Hard-core potential \(\rightarrow \) inclusion of a correlation factor
- Still to be solved: proper treatment of breakup channels \((N + d \rightarrow N + n + p)\)

The HH method

HH functions

- hyperradius $\rho^2 = \frac{2}{A} \sum_{i<j} r_{ij}^2$
- hyperangles $\Omega = \{ \xi_1, \ldots, \xi_{A-1} \} \ (\xi_i \text{ Jacobi vectors})$
- $T = T_\rho + T_\Omega$
- The HH functions $\mathcal{Y}_{[K]}(\Omega)$ are the eigenstates of T_Ω

$$\Phi_n = L_n^{(3A-4)}(\beta \rho) e^{-\beta \rho/2} \mathcal{Y}_{[K]}(\Omega)$$

Advantages

Simplified calculation of the matrix elements of

- local/non-local NN & 3N potentials
- coordinate/momentum space interaction
The HH method

HH functions

- hyperradius $\rho^2 = \frac{2}{A} \sum_{i<j} r_{ij}^2$
- hyperangles $\Omega = \{ \frac{\xi_1}{\rho}, \ldots, \frac{\xi_{A-1}}{\rho} \}$ (\(\xi\), Jacobi vectors)
- $\mathcal{T} = \mathcal{T}_\rho + \mathcal{T}_\Omega$
- The HH functions $\Phi_{[K]}(\Omega)$ are the eigenstates of \mathcal{T}_Ω

$$
\Phi_n = L_n^{(3A-4)}(\beta \rho) e^{-\beta \rho/2} \mathcal{Y}_{[K]}(\Omega)
$$

Advantages

Simplified calculation of the matrix elements of

- local/non-local NN & 3N potentials
- coordinate/momentum space interaction
Scattering calculation

Example: $A - B$ elastic scattering

\[
\Omega_{LS}^F(A, B) = \sqrt{\frac{1}{N}} D_{AB} \sum_{\text{perm.}=1}^N \left[Y_L(\hat{r}_{AB})[\phi_A \phi_B]_S \right]_{JJ_z} \frac{F_L(\eta, q_{AB}r_{AB})}{q_{AB}r_{AB}}
\]

\[
\Omega_{LS}^G(A, B) = \sqrt{\frac{1}{N}} D_{AB} \sum_{\text{perm.}=1}^N \left[Y_L(\hat{r}_{AB})[\phi_A \phi_B]_S \right]_{JJ_z} \frac{G_L(\eta, q_{AB}r_{AB})}{q_{AB}r_{AB}} (1 - e^{-\gamma r_{AB}})^{2L+1}
\]

\[
\Omega_{LS}^\pm(A, B) = \Omega_{LS}^G(A, B) \pm i\Omega_{LS}^F(A, B)
\]

\[
|\Psi_{LS}\rangle = \sum_n a_{LS,n} \phi_n + |\Omega_{LS}^F(p, ^3\text{He})\rangle + \sum_{L'S'} T_{LS,L'S'} |\Omega_{L'S'}^+(p, ^3\text{He})\rangle
\]

- $T_{LS,L'S'}$ = T-matrix elements
- $a_{LS,n}$ and $T_{LS,L'S'}$ determined using the Kohn variational principle (KVP)
Scattering calculation

Example: $A - B$ elastic scattering

\[
\Omega^{F}_{LS}(A, B) = \sqrt{\frac{1}{N}} D_{AB} \sum_{\text{perm.}=1}^{N} \left[Y_L(\hat{r}_{AB})[\phi_A \phi_B]_S \right]_{JJ_z} F_L(\eta, q_{AB}r_{AB}) \frac{1}{q_{AB}r_{AB}}
\]

\[
\Omega^{G}_{LS}(A, B) = \sqrt{\frac{1}{N}} D_{AB} \sum_{\text{perm.}=1}^{N} \left[Y_L(\hat{r}_{AB})[\phi_A \phi_B]_S \right]_{JJ_z} G_L(\eta, q_{AB}r_{AB}) (1 - e^{-\gamma r_{AB}})^{2L+1} \frac{1}{q_{AB}r_{AB}}
\]

\[
\Omega^{\pm}_{LS}(A, B) = \Omega^{G}_{LS}(A, B) \pm i\Omega^{F}_{LS}(A, B)
\]

\[
|\Psi_{LS}\rangle = \sum_{n} a_{LS,n} \Phi_n + |\Omega^{F}_{LS}(p, ^3\text{He})\rangle + \sum_{L' S'} T_{LS,L'S'} |\Omega^{+}_{L'S'}(p, ^3\text{He})\rangle
\]

- $T_{LS,L'S'} = T$-matrix elements
- $a_{LS,n}$ and $T_{LS,L'S'}$ determined using the Kohn variational principle (KVP)
Study of the 3N force (1)

Fix the parameters of the 3N force (∼5):

1. 3H and 4He binding energies
2. $n - d$ doublet scattering length ($J = 1/2$)
3. $n - d$ and $p - d$ elastic scattering (A_y)

<table>
<thead>
<tr>
<th>Potential</th>
<th>$B(^3H)$ (MeV)</th>
<th>$B(^4He)$ (MeV)</th>
<th>$^2a_{nd}$ (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18</td>
<td>7.624</td>
<td>24.22</td>
<td>1.258</td>
</tr>
<tr>
<td>I-N3LO</td>
<td>7.854</td>
<td>25.38</td>
<td>1.100</td>
</tr>
<tr>
<td>AV18/TM’</td>
<td>8.440</td>
<td>28.31</td>
<td>0.623</td>
</tr>
<tr>
<td>AV18/UIX</td>
<td>8.479</td>
<td>28.48</td>
<td>0.578</td>
</tr>
<tr>
<td>I-N3LO/N-N2LO</td>
<td>8.474</td>
<td>28.37</td>
<td>0.675</td>
</tr>
<tr>
<td>Exp.</td>
<td>8.482</td>
<td>28.30</td>
<td>0.645±0.003±0.007</td>
</tr>
</tbody>
</table>

n-d zero-energy scattering = first “excited” state of 3H
Study of the 3N force (2)

Urbana \[W(1, 2, 3) = aW_{2\pi}^a(1, 2, 3) + cW_{2\pi}^c(1, 2, 3) + U_0 W_R(1, 2, 3) \].

<table>
<thead>
<tr>
<th>Potential</th>
<th>(a)</th>
<th>(c/a)</th>
<th>(U_0)</th>
<th>(B(\text{3H})) (MeV)</th>
<th>(B(\text{4He})) (MeV)</th>
<th>(a_{\text{nd}}) (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18</td>
<td>-0.0293</td>
<td>0.25</td>
<td>0.0048</td>
<td>7.624</td>
<td>24.22</td>
<td>1.258</td>
</tr>
<tr>
<td>AV18+URIX</td>
<td>-0.0293</td>
<td>0.25</td>
<td>0.0048</td>
<td>8.479</td>
<td>28.48</td>
<td>0.578</td>
</tr>
<tr>
<td>AV18+URIX-1</td>
<td>-0.0200</td>
<td>1.625</td>
<td>0.0176</td>
<td>8.484</td>
<td>28.33</td>
<td>0.644</td>
</tr>
<tr>
<td>AV18+URIX-2</td>
<td>-0.0250</td>
<td>1.25</td>
<td>0.0182</td>
<td>8.484</td>
<td>28.34</td>
<td>0.644</td>
</tr>
<tr>
<td>AV18+URIX-3</td>
<td>-0.0293</td>
<td>1.00</td>
<td>0.0181</td>
<td>8.484</td>
<td>28.33</td>
<td>0.643</td>
</tr>
<tr>
<td>Exp.</td>
<td></td>
<td></td>
<td></td>
<td>8.482</td>
<td>28.30</td>
<td>0.645(\pm)0.003(\pm)0.007</td>
</tr>
</tbody>
</table>

Significant modifications of the 3N force

We have found 3 families of the 3N force: the N-N2LO, Urbana, and TM- families

In each case, same operatorial structure (N2LO)

They differ in the short-range part (regularization)
Study of the $3N$ force (3)

Comparison with p-d: A_y and $i T_{11}$

$N - d$ elastic scattering
solid curve: AV18+UIX
red band= AV18+N-N2LO-family
cyan band= AV18+Urbana-family
violet band= AV18+TM-family

work in progress
\(n - ^{3}\text{He} \) scattering lengths

\[
|\Psi_{LS}\rangle = \sum_n a_{LS,n}\phi_n + \Omega_{LS}^F(n, ^{3}\text{He}) + \sum_{L'S'} T_{LS,L'S'}^{el} \Omega_{L'S'}^+(n, ^{3}\text{He}) + \sum_{L'S'} T_{LS,L'S'}^{ex} \Omega_{L'S'}^+(p, ^{3}\text{H})
\]

\[a_{S} = -\lim_{T} T_{0S,0S}^{el}/q_{n^{3}\text{He}}\]

<table>
<thead>
<tr>
<th>Int.</th>
<th>Method</th>
<th>(a_0) (fm)</th>
<th>(a_1) (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV18</td>
<td>HH</td>
<td>8.03 – i5.18</td>
<td>3.53 – i0.0076</td>
</tr>
<tr>
<td></td>
<td>RGM</td>
<td>7.79 – i4.98</td>
<td>3.47 – i0.0066</td>
</tr>
<tr>
<td></td>
<td>FY</td>
<td>7.71 – i5.25</td>
<td>3.43 – i0.0082</td>
</tr>
<tr>
<td>AV18/UIX</td>
<td>HH</td>
<td>7.89 – i3.34</td>
<td>3.37 – i0.0055</td>
</tr>
<tr>
<td></td>
<td>RGM</td>
<td>7.63 – i4.05</td>
<td>3.31 – i0.0051</td>
</tr>
<tr>
<td>I-N3LO</td>
<td>HH</td>
<td>7.49 – i5.05</td>
<td>3.45 – i0.0058</td>
</tr>
<tr>
<td></td>
<td>FY</td>
<td>7.82 – i4.51</td>
<td>3.47 – i0.0068</td>
</tr>
<tr>
<td></td>
<td>AGS</td>
<td>7.36 – i0.0042</td>
<td></td>
</tr>
<tr>
<td>I-N3LO/N-N2LO</td>
<td>HH</td>
<td>7.370(58) – i4.448(5)</td>
<td>3.278(53) – i0.001(2)</td>
</tr>
</tbody>
</table>

Triplet $n - ^3\text{He}$ scattering length vs. $B(^3\text{H})$

Also calculated by Deltuva & Fonseca, (2007)
Integral relations (IR) for the process $A + B \rightarrow A + B$

Example

$A = 2$, central potential, S-wave, no spin

$$(H - E)\psi(r) = \left(-\frac{\hbar^2}{2\mu} \nabla^2 + V - E\right)\psi(r) = 0 \quad E = \frac{q^2}{2\mu}$$

$$\Omega^F = \sqrt{\frac{2\mu q}{4\pi}} \frac{\sin(qr)}{qr}$$

$$\Omega^G = \sqrt{\frac{2\mu q}{4\pi}} \frac{\cos(qr)}{qr} \left(1 - \exp(-\gamma r)\right).$$

- γ “regularization” parameter
- Normalization chosen so that

$$\langle \Omega^F | H - E | \Omega^G \rangle - \langle \Omega^G | H - E | \Omega^F \rangle = 1$$

$$\psi(r \rightarrow \infty) \longrightarrow A\Omega^F(r) + B\Omega^G(r) \quad \tan \delta = B/A$$
Exact relations

\[
\langle \Psi | H - E | \Omega^G \rangle - \langle \Omega^G | H - E | \Psi \rangle = A
\]

\[
\langle \Psi | H - E | \Omega^F \rangle - \langle \Omega^F | H - E | \Psi \rangle = -B
\]

If \(\Psi \) is the exact wave function: \((H - E)\Psi = 0 \)

\[
\frac{B}{A} = -\frac{\langle \Psi | H - E | \Omega^F \rangle}{\langle \Psi | H - E | \Omega^G \rangle}
\]

These relations represent an efficient method to extract \(A \) & \(B \)

1. Solve \(H\Psi = E\Psi \) with some method
2. extract \(A, B \) (and \(\tan \delta \)) using the IR

Similar methods

1. Harris PRL 19, 173 (1967)
The variational character of the IR (1)

- **exact** wave function \(\Psi = \Phi + A\Omega^F + B\Omega^G \)
 - \(\Phi \) short range part | \(A \) normalization (considered fixed in the following)
- **trial** wave function \(\overline{\Psi} = \overline{\Phi} + A\Omega^F + B\Omega^G \)

Typical case: \(\Phi_n, n = 1, \ldots \) complete set of square integrable functions

\[
\Phi = \sum_{n=1}^{\infty} a_n \Phi_n \quad \overline{\Phi} = \sum_{n=1}^{M} \overline{a}_n \Phi_n
\]

\[
\overline{\Psi} - \Psi \sim \epsilon \quad \epsilon \text{ “small”}
\]

IR

\[
\begin{bmatrix}
B \\
\overline{A}
\end{bmatrix}
= -\frac{\langle \overline{\Psi} | H - E | \Omega^F \rangle}{\langle \overline{\Psi} | H - E | \Omega^G \rangle}
\]

differs from \(B/A \) by \(\epsilon^2 \)

\[
(\overline{a}_n - a_n)_{[n=1,M]} \sim \epsilon \quad (a_n)_{[n=M+1,\infty]} \sim \epsilon \quad \overline{B} - B \sim \epsilon
\]
The variational character of the IR (2)

\[
\begin{bmatrix} B \\ A \end{bmatrix} = -\frac{\langle \Psi | H - E | \Omega^F \rangle}{\langle \Psi | H - E | \Omega^G \rangle} \quad \bar{\Psi} = \bar{\Phi} + A\Omega^F + B\Omega^G \quad \bar{\Phi} = \sum_{n=1}^{M} \bar{a}_n \Phi_n
\]

- Use \(\Omega^F = (1/A)(\Psi - \Phi - B\Omega^G) \) (\(\Psi \) = exact wave function)

\[
\begin{bmatrix} B \\ A \end{bmatrix} = \frac{B}{A} - \frac{1}{A} \frac{\langle \bar{\Psi} | H - E | \Phi \rangle}{\langle \bar{\Psi} | H - E | \Omega^G \rangle}
\]

1. \(\langle \bar{\Psi} | H - E | \Phi \rangle = \langle \Phi | H - E | \bar{\Psi} \rangle \) (\(\Phi \) is short-range)
2. Typically \(\bar{\Psi} \) is determined by \(\langle \Phi_n | H - E | \bar{\Psi} \rangle = 0 \quad n = 1, \ldots, M \)

\[
\langle \sum_{n=1}^{\infty} a_n \Phi_n | H - E | \bar{\Psi} \rangle = \langle \sum_{n=M+1}^{\infty} a_n \Phi_n | H - E | \bar{\Psi} \rangle = \langle \sum_{n=M+1}^{\infty} a_n \Phi_n | H - E | \epsilon \rangle \sim \epsilon^2
\]

3. It can also be derived from the KVP [PRL 103, 090402 (2009)]
Generalization to $A > 2$

$$\Omega_{LS}^F(A, B) = \sqrt{\frac{1}{N}} D_{AB} \sum_{\text{perm.}=1}^{N} \left[Y_L(\hat{r}_{AB})[\phi_A \phi_B]_S \right]_{JJ_z} \frac{F_L(\eta, q_{AB}r_{AB})}{q_{AB}r_{AB}}$$

$$\Omega_{LS}^G(A, B) = \sqrt{\frac{1}{N}} D_{AB} \sum_{\text{perm.}=1}^{N} \left[Y_L(\hat{r}_{AB})[\phi_A \phi_B]_S \right]_{JJ_z} \frac{G_L(\eta, q_{AB}r_{AB})}{q_{AB}r_{AB}}(1 - e^{-\gamma r_{AB}})^{2L+1}$$

- D_{AB} = normalization factors chosen so that

$$\langle \Omega^F (A, B) | H - E | \Omega^G (A, B) \rangle - \langle \Omega^G (A, B) | H - E | \Omega^F (a, B) \rangle = 1 \quad D_{AB} = \sqrt{2\mu_{AB}q_{AB}}$$

- $i \equiv LS, AB$: $i = 1, \ldots, N$ asymptotic channels

$$\overline{\Psi}_i \rightarrow A_{ij} \Omega^F_j + \overline{B}_{ij} \Omega^G_j \quad i = 1, \ldots, N \quad K = A^{-1}\overline{B} \quad K - \text{matrix}$$

Generalized IR

$$A_{ij} = < \overline{\Psi}_i | H - E | \Omega^G_j > \quad \overline{B}_{ij} = - < \overline{\Psi}_i | H - E | \Omega^F_j > \quad [K] = A^{-1}\overline{B}$$
Applications

Adiabatic HH

- Calculation of Ψ using the adiabatic HH expansion
- See next talk by Eduardo
- IR first derived for this case P. Barletta et al., PRL 103, 090402 (2009)
- Direct application of the boundary condition ($A_{ij} = \delta_{ij}$) only for $\rho \to \infty$

Use of the short range character of the IR

- “interacting region” $\equiv \mathcal{V}_i =$ region where all particles are close together ($\rho \leq 30$ fm)
- $(H - E)\Omega_i^{F,G} = 0$ for r_{AB} outside \mathcal{V}_i
- $\bar{\Psi}_i$ need to be known only in \mathcal{V}_i

1. Use of “bound-state”–like wave function
2. Phase-shifts of scattering between charged particles using a screened Coulomb interaction
Applications

Adiabatic HH

- Calculation of Ψ using the adiabatic HH expansion
- See next talk by Eduardo
- IR first derived for this case P. Barletta et al., PRL 103, 090402 (2009)
- Direct application of the boundary condition ($A_{ij} = \delta_{ij}$) only for $\rho \to \infty$

Use of the short range character of the IR

- "interacting region" $\equiv \mathcal{V}_i = \text{region where all particles are close together} (\rho \leq 30 \text{ fm})$
- $(H - E)\Omega_i^{F,G} = 0 \text{ for } r_{AB} \text{ outside } \mathcal{V}_i$
- Ψ_i need to be known only in \mathcal{V}_i

1. Use of “bound-state”—like wave function
2. Phase-shifts of scattering between charged particles using a screened Coulomb interaction
"Bound-state"–like wave function

- Expansion over a square integrable function basis

\[\Psi = \sum_{n=1}^{M} a_n \Phi_n \quad \Phi_n \to 0 \text{ outside } V_1 \]

- Examples: HO basis, HH basis, etc.

Eigenvalue problem

\[\langle \Phi_n | H - E | \Phi_{n'} \rangle a_{n'} = 0 \]

- The lowest eigenvalues: \(\rightarrow \) bound states
- The others eigenvalues: \(\rightarrow \) scattering states (wrong behaviour outside \(V_1 \))
- \(\rightarrow \) use them in the IR!
Example (1): A=2 case, S-wave

\[V(r) = -V_0 \exp\left(-\frac{r^2}{r_0^2}\right) \quad V_0 = 51.5 \text{ MeV} \quad r_0 = 1.6 \text{ fm} \]

\[\bar{\Psi} = \sum_{n=1}^{M} a_n \Phi_n \quad \Phi_n = L_n^{(2)}(\beta r) \exp\left(-\frac{\beta r}{2}\right) \]

\[
\begin{array}{c|c|c|c|c}
M & 10 & 20 & 30 & 40 \\
\hline
E_0 & -0.395079 & -0.397740 & -0.397743 & -0.397743 \\
E_1 & 0.536349 & 0.116356 & 0.048091 & 0.026008 \\
\tan \delta & -1.507280 & -0.622242 & -0.392005 & -0.286479 \\
[B/A] & -1.522377 & -0.621938 & -0.392021 & -0.286480 \\
\end{array}
\]
Example 2: $A = 3$ case

- Elastic $N - d$ scattering $E_{c.m.} < 2.2$ MeV
- For fixed J and parity
 - $J^\pi = \frac{1}{2}^+ : LS = 2S_{\frac{1}{2}}, 4D_{\frac{1}{2}}$ (1 bound state)
 - $J^\pi = \frac{1}{2}^- : LS = 2P_{\frac{1}{2}}, 4P_{\frac{1}{2}}$ (no bound state)
 - $J^\pi = \frac{3}{2}^+ : LS = 4S_{\frac{3}{2}}, 2D_{\frac{3}{2}}, 4D_{\frac{3}{2}}$ (no bound state)
 - etc.
- Expansion basis
 $$\Phi_n = L_m^{(5)}(\beta \rho) \exp(-\beta \rho/2) \times \mathcal{Y}_K$$
- $\rho =$ hyperradius, $\mathcal{Y}_K = $ HH functions
- Typically $m \rightarrow 20$

There are 2 non-linear parameters

- β in Φ_n γ in Ω^G

$$\Omega_{LS}^G(A, B) = \sqrt{\frac{1}{N}} D_{AB} \sum_{\text{perm.} = 1}^N \left[Y_L(\hat{r}_{AB})[\phi_A \phi_B]_S \right]_{JJ_z} \frac{G_L(\eta, q_{AB} r_{AB})}{q_{AB} r_{AB}} \left(1 - e^{-\gamma r_{AB}}\right)^{2L+1}$$
$n - d$ low energy scattering

Central potential: Malfliet-Tjon I-III

\[
V_{S=0}(r) = \frac{1438.72}{r} e^{-3.11r} - \frac{513.968}{r} e^{-1.55r} \quad \text{and} \quad V_{S=1}(r) = \frac{1438.72}{r} e^{-3.11r} - \frac{626.885}{r} e^{-1.55r}
\]

\[
K(E^0) = k \cot \delta
\]

\[
K(E^0) = C_0^2(\eta) k \cot \delta + 2k\eta h(\eta)
\]
Example 3: $\frac{1}{2}^+$, AV18 potential

Problem: how to obtain 2 or more Ψ at the same E?

1. Look at the eigenvalues $-2.2 < E < 0$ MeV
2. Vary β
Example 4: Preliminary results for $A = 4$

PRELIMINARY

$K = 34 \quad E = -3.59 \quad E_p = 3.55$

$K = 40 \quad E = -4.26 \quad E_p = 2.87$

$K = 46 \quad E = -4.55 \quad E_p = 2.58$
Conclusions

Integral Relations

- The IR could allow for a variety of applications for \(A > 4 \) systems
- They can be used with different methods (GFMC, NCSM, EIHH, AHH, ...)
 - Solution of \(H\Psi = E\Psi \) in \(\mathcal{V}_i \)
 - Calculation of the overlap integrals (via Monte Carlo also for “large” \(A \))
- Tests in \(A = 3, 4 \) (elastic channels) OK

Future work

- A better treatment of coupled channels
- Extension to breakup channels

In progress

- Extension of our HH method to \(A > 4 \)
- Work in progress with M. Gattobigio, INL, Nice (France)
Non-symmetrical basis

\[\psi = \sum_k a_k \Phi_k \]

- It would be easy to use states \(\tilde{\Phi}_k \) constructed without any particular symmetry.
- In fact: to construct antisymmetric states very difficult as \(A \) increases
 \[\Phi_k = \sum_{k'} b_{k'} \tilde{\Phi}_k \]
- Idea: solve \(H \sum_k a_k \tilde{\Phi}_k = E \sum_k a_k \tilde{\Phi}_k \)
- since \(H \) is a symmetric operators, the eigenstates are also eigenstates of the symmetric group \(S_A \)
- Last step: select the antisymmetrical eigenstates
 - multiplicity
 - diagonalizing some operator

“transposition operator” \[[(2)] = \sum_{i<j} (i \leftrightarrow j) \]
Application for 5 bosons

<table>
<thead>
<tr>
<th>irreps of S_5</th>
<th>Multiplicity</th>
<th>$[(2)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>[4, 1]</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>[3, 2]</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>[3, 1, 1]</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>[2, 2, 1]</td>
<td>5</td>
<td>-2</td>
</tr>
<tr>
<td>[2, 1, 1, 1]</td>
<td>4</td>
<td>-5</td>
</tr>
<tr>
<td>[1, 1, 1, 1, 1]</td>
<td>1</td>
<td>-10</td>
</tr>
</tbody>
</table>

Eigenvalues from $H\Psi = E\Psi$

$$\Psi = \sum_k a_k \tilde{\Phi}_k$$

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>$[(2)]$</th>
<th>irrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.9771E+00</td>
<td>5.0000E+00</td>
<td>[4, 1]</td>
</tr>
<tr>
<td>-7.9771E+00</td>
<td>5.0000E+00</td>
<td></td>
</tr>
<tr>
<td>-7.9771E+00</td>
<td>5.0000E+00</td>
<td></td>
</tr>
<tr>
<td>-7.9771E+00</td>
<td>5.0000E+00</td>
<td></td>
</tr>
<tr>
<td>-5.0673E+00</td>
<td>1.0000E+01</td>
<td>[5]</td>
</tr>
<tr>
<td>-1.4406E-01</td>
<td>5.0000E+00</td>
<td>[4, 1]</td>
</tr>
<tr>
<td>-1.4406E-01</td>
<td>5.0000E+00</td>
<td></td>
</tr>
<tr>
<td>-1.4406E-01</td>
<td>5.0000E+00</td>
<td></td>
</tr>
<tr>
<td>-1.4406E-01</td>
<td>5.0000E+00</td>
<td></td>
</tr>
<tr>
<td>1.9439E+00</td>
<td>2.0000E+00</td>
<td>[3, 2]</td>
</tr>
<tr>
<td>1.9439E+00</td>
<td>2.0000E+00</td>
<td></td>
</tr>
<tr>
<td>6.4904E+00</td>
<td>-2.0000E+00</td>
<td>[2, 2, 1]</td>
</tr>
<tr>
<td>6.4904E+00</td>
<td>-2.0000E+00</td>
<td></td>
</tr>
</tbody>
</table>
Other publications 2008/2009

