Role of the continuum in Coupled-Cluster theory

Gaute Hagen
Collaborators: T. Papenbrock, D. Dean, M. Hjorth-Jensen, S. Bacca and A. Schwenk

1Oak Ridge National Laboratory, Physics Division, E-mail: hageng@ornl.gov

Weakly-Bound Systems in Atomic and Nuclear Physics
INT, March 10, 2010
1. The driplines - the limit of nuclear existence

2. Coupled Cluster approach to nuclear structure
 - Single-Reference Coupled-Cluster theory
 - Coupled-Cluster approach to open quantum systems and Helium isotopes

3. Equation-of-Motion Coupled-Cluster approach to open-shell nuclei
 - Equation-of-Motion Coupled-Cluster theory
 - Microscopic description of resonances and halo states in 17F and 17O
 - Low-lying states in 17O and the Center of Mass
 - Shell evolution in the oxygen and fluorine isotopes

4. Conclusion and Perspectives
Peculiarities at the nuclear driplines

~ 300 stable nuclei
N/Z ~ 1 for light nuclei
N/Z ~ 1.5 for ^{208}Pb

~ 4000-6000 unstable nuclei
decay by α, β, 1p, 2p, 1n, cluster emission, fission...
Peculiarities at the nuclear driplines

- Motivation
- Ab-initio Coupled-Cluster approach
- Open-shell nuclei and CCM
- Conclusion and Perspectives

INT workshop 2010

Coupled-Cluster approach to nuclear structure
“If you want more accuracy, you have to use more theory (more orders)”

Effective Lagrangian \rightarrow obeys QCD symmetries (spin, isospin, chiral symmetry breaking)

Lagrangian \rightarrow infinite sum of Feynman diagrams.

Expand in $O(Q/\Lambda_{QCD})$

Weinberg, Ordonez, Ray, van Kolck

NN amplitude uniquely determined by two classes of contributions: contact terms and pion exchange diagrams.

24 parameters (rather than 40 from meson theory) to describe 2400 data points with
Low-momentum nucleon-nucleon interaction: $V_{\text{low}-k}$

A-body nuclear Hamiltonian

$$H^A = T - T_{CM} + V_2(\Lambda) + V_3(\Lambda) + \cdots V_A(\Lambda) \approx T - T_{CM} + V_2(\Lambda) + V_3(\Lambda)$$

Single-Reference Coupled Cluster Theory

Exponential Ansatz for Ψ

\[
|\psi\rangle = e^{\hat{T}}|\Phi_0\rangle, \quad \hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_A
\]

\[
\hat{T}_1 = \sum_{i,a} t_i^a \hat{a}_a \hat{a}_i, \quad \hat{T}_2 = \frac{1}{2} \sum_{i<j,a<b} t_{ij}^{ab} \hat{a}_a \hat{a}_b \hat{a}_j \hat{a}_i.
\]

Coupled Cluster Equations

\[
\Delta E = \langle \Phi_0 | (H_N \exp(T))_C | \Phi_0 \rangle
\]

\[
0 = \langle \Phi_p | (H_N \exp(T))_C | \Phi_0 \rangle
\]

\[
\tilde{H} = (H_N \exp(T))_C
\]

1. **Coupled Cluster Theory is fully microscopic.**
2. **Coupled Cluster is size extensive.** No unlinked diagrams enters, and error scales linearly with number of particles.
3. Low computational cost (CCSD scales as $n_o^2 n_u^4$).
4. Capable of systematic improvements.
5. Amenable to parallel computing.
Coupled Cluster in pictures

\[|\Psi\rangle = e^{T^{(A)}} |\Phi\rangle, \quad T^{(A)} = \sum_{k=1}^{m_A} T_k \]

\[T_1 = \sum_{i,a} t_i^a |\Phi^a_i\rangle, \quad T_2 = \sum_{i,j,a>b} t_{ij}^{ab} |\Phi^{ab}_{ij}\rangle, \quad T_3 = \sum_{i,j,k,a>b>c} t_{ijk}^{abc} |\Phi^{abc}_{ijk}\rangle \]
How well does SR-CC describe open-shell nuclei?

Various Coupled Cluster approaches to the 3–6He ground states. Single reference Coupled-Cluster methods works.

<table>
<thead>
<tr>
<th>Method</th>
<th>3He</th>
<th>4He</th>
<th>5He</th>
<th>6He</th>
<th>$\langle J^2 \rangle$, 6He</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD</td>
<td>-6.21</td>
<td>-26.19</td>
<td>-21.53</td>
<td>-20.96</td>
<td>0.61</td>
</tr>
<tr>
<td>CCSD(T)</td>
<td>-6.40</td>
<td>-26.27</td>
<td>-21.88</td>
<td>-22.60</td>
<td>0.65</td>
</tr>
<tr>
<td>CCSDT-1</td>
<td>-6.41</td>
<td>-28.27</td>
<td>-21.89</td>
<td>-22.85</td>
<td>0.29</td>
</tr>
<tr>
<td>CCSDT-2</td>
<td>-6.41</td>
<td>-28.26</td>
<td>-21.89</td>
<td>-22.78</td>
<td>0.25</td>
</tr>
<tr>
<td>CCSDT-3</td>
<td>-6.42</td>
<td>-26.27</td>
<td>-21.92</td>
<td>-22.90</td>
<td>0.26</td>
</tr>
<tr>
<td>CCSDT</td>
<td>-6.45</td>
<td>-26.28</td>
<td>-22.01</td>
<td>-22.52</td>
<td>0.04</td>
</tr>
<tr>
<td>FCI</td>
<td>-6.45</td>
<td>-26.3</td>
<td>-22.1</td>
<td>-22.7</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Coupled-cluster approach to open quantum systems

- SR Coupled-Cluster theory
- Coupled-Cluster theory for open quantum systems

Coupled-cluster approach to nuclear structure

INT workshop 2010
CCSD results for Helium chain using $V_{\text{low-}k}$

- $V_{\text{low-}k}$ from N3LO with $\Lambda = 1.9\text{fm}^{-1}$.

- First *ab-initio* calculation of decay widths of a whole isotopic chain.
- CCM unique method for dripline nuclei.
- ~ 1000 active orbitals
- Underbinding hints at missing 3NF
Helium isotopes with $V_{\text{low}-k}$

<table>
<thead>
<tr>
<th>Λ [fm$^{-1}$]</th>
<th>$E_0(^4\text{He})$</th>
<th>$E_0^\infty(^6\text{He})$ [for $K_{\text{max}} = 14$]</th>
<th>$E_0(^8\text{He})$ Λ-CCSD(T) [CCSD]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>$-29.30(2)$</td>
<td>$-30.28(3)$ $[-30.13]$</td>
<td>-31.21 $[-30.33]$</td>
</tr>
<tr>
<td>2.0</td>
<td>$-28.65(2)$</td>
<td>$-29.35(13)$ $[-29.13]$</td>
<td>-29.84 $[-28.72]$</td>
</tr>
<tr>
<td>2.4</td>
<td>$-27.40(2)$</td>
<td>$-27.62(19)$ $[-26.91]$</td>
<td>-27.54 $[-25.88]$</td>
</tr>
</tbody>
</table>
Single-particle density in 4He and 8He.

Gamow-Hartree-Fock basis has correct asymptotics.

N^3LO evolved down to $\lambda = 2.0\text{fm}^{-1}$ from similarity renormalization group theory.

\begin{itemize}
 \item Full density
 \item Proton density
 \item Neutron density
\end{itemize}
Most nuclei are open-shell. How to access these nuclei with coupled-cluster method?
Single-reference or Multi-reference Coupled-Cluster theory?

Single-Reference CC
- Single-Reference Coupled-Cluster (SR CC) theory can in principle be applied to open-shell nuclei.
- SR CC cannot define a unique reference function.
- SR CC breaks rotational invariance for truly open shell systems like ^6He.
- SR CC requires uncoupled basis (m-scheme), must use soft interactions due to explosion of basis states.

Equation-of-Motion (Multi-Reference) CC:
- Equation-of-Motion provides us with a consistent approach to open-shell nuclei.
- Equation-of-Motion can be implemented in a spherical scheme, can apply basis sets large enough to accommodate "bare" interactions.
Equation-of-Motion CC for open-shell nuclei

Equation-of-Motion Coupled-Cluster theory

The idea of Equation-of-Motion Coupled-Cluster theory is to calculate ground- and excited states of system B by acting with a excitation operator Ω_k on the ground state of system A

$$|\psi_k^B\rangle = \Omega_k |\psi_0^A\rangle, \quad |\psi^A\rangle = \exp(T) |\phi_0^A\rangle$$

Define the non-particle conserving excitation operators $\Omega_k = R_k^{(A\pm1)}$

$$R_k^{(A+1)} = r^a a_a^\dagger + \frac{1}{2} r_{ij}^{ab} a_a^\dagger a_b^\dagger a_j + \ldots,$$

$$R_k^{(A-1)} = r_i a_i + \frac{1}{2} r_{ij}^{ba} a_b^\dagger a_i a_j + \ldots,$$

Particle-Attached/Removed EOM-CC equations

$$\left[H, R_k^{(A\pm1)} \right] |\phi_0\rangle = \left(HR_k^{(A\pm1)} \right)_C |\phi_0\rangle = \omega_k R_k^{(A\pm1)} |\phi_0\rangle.$$
Low-lying single-particle states in 17F using a Gamow-Hartree-Fock basis (GHF) and a Oscillator-Hartree-Fock (OHF) basis.

Very weak dependence on the oscillator frequency $\hbar \omega$ for calculations done in a GHF basis.

Significant effect of continuum coupling on the $1/2^+$ and $3/2^+$ states in 17F.
Cutoff dependence on the low-lying states in 17F.

- Spin-orbit splitting increases between the $d_{5/2}$-$d_{3/2}$ orbitals with decreasing cutoff λ.
- $s_{1/2}$ state show very weak dependence on the cutoff.
- The $1/2^+$ state is a *halo* state which extends far beyond the range of the interaction. Renormalizing the interaction by integrating out high momentum modes does not alter the long range physics.
Low-lying states in 17F and 17O using a Gamow-Hartree-Fock basis and a Oscillator-Hartree-Fock basis.
Summary of results for ^{17}O and ^{17}F

- Our calculations for the $1/2^+$ states in ^{17}F and ^{17}O agree remarkably well with experiment.
- Spin-orbit splitting between $d_{5/2}-d_{3/2}$ orbitals too compressed without three-nucleon forces.
- Our calculations of the widths of the $3/2^+$ resonant states compare reasonably well with experiment.

<table>
<thead>
<tr>
<th></th>
<th>^{17}O</th>
<th></th>
<th>^{17}F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$(1/2)^+_1$</td>
<td>$(5/2)^+_1$</td>
<td>$E_{\text{s.o.}}$</td>
</tr>
<tr>
<td>OHF</td>
<td>-1.888</td>
<td>-2.955</td>
<td>4.891</td>
</tr>
<tr>
<td>GHF</td>
<td>-2.811</td>
<td>-3.226</td>
<td>4.286</td>
</tr>
<tr>
<td>Exp.</td>
<td>-3.272</td>
<td>-4.143</td>
<td>5.084</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>^{17}O $(3/2)^+_1$</th>
<th></th>
<th>^{17}F $(3/2)^+_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Re[E_{sp}]</td>
<td>Γ</td>
<td>Re[E_{sp}]</td>
</tr>
<tr>
<td>PA-EOMCCSD</td>
<td>1.059</td>
<td>0.014</td>
<td>3.859</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.942</td>
<td>0.096</td>
<td>4.399</td>
</tr>
</tbody>
</table>
Low-lying states in 17O with V_{srg} (2.8/fm) and the center of mass

- Low-lying $1/2^+$, $3/2^+$ and $5/2^+$ states in 17O calculated using PA-EOM-CCSD in 13 major oscillator shells.

- The expectation value of $H_{cm}(\omega) = T_{cm} + \frac{1}{2} m A \omega^2 R_{cm}^2 - \frac{3}{2} \hbar \omega$ measures to what degree the CoM is a Gaussian with oscillator frequency ω.

![Graph showing low-lying states in 17O and 17F with V_{srg} (2.8/fm) and the center of mass.](image-url)
Motivation
Ab-initio Coupled-Cluster approach
Open-shell nuclei and CCM
Conclusion and Perspectives

PA-EOMCC
Low-lying states in 17F and 17O
PA-EOM and Center of Mass
Shell-evolution in oxygen and fluor

Coupled-Cluster wave function factorizes: $\psi_{int}\psi_{cm}$

- Assumption: CoM wave function is always a gaussian (approximately).
- Take expectation value of the generalized CoM Hamiltonian $H_{cm}(\tilde{\omega}) = T_{cm} + \frac{1}{2} mA\tilde{\omega}^2 R_{cm}^2 - \frac{3}{2} \hbar\tilde{\omega}$.
- CC wave function factorizes and the CoM wave function is a Gaussian with almost constant width $\hbar\tilde{\omega} \sim 16\,\text{MeV}$ for all different $\hbar\omega$ values of the basis.
Shell evolution towards the drip line

Motivation
Ab-initio Coupled-Cluster approach
Open-shell nuclei and CCM
Conclusion and Perspectives

PA-EOMCC
Low-lying states in 17F and 17O
PA-EOM and Center of Mass
Shell-evolution in oxygen and fluor

INT workshop 2010
Coupled-Cluster approach to nuclear structure

25O neutron separation energy: -820 keV
the width was measured to be 90(30) keV
giving a lifetime of $t \sim 7 \times 10^{-21}$ sec

C. Hoffman PRL 100 (2008) 152502

FIG. 4 (color online). The experimental [25,26] (data points) and theoretical [13–15] (lines) one- and two-neutron separation energies for the $N = 15$–18 oxygen isotopes. The experimental error is shown if it is larger than the symbol size.
Low lying states in oxygen and fluorine isotopes calculated using PA/PR-EOMCCSD with “bare” chiral interactions.

Model space consists of 15 major harmonic oscillator shells with fixed oscillator frequency $\hbar \omega = 32\text{MeV}$.

^{25}O is stable with respect to neutron emission. Interesting inversion of ground state in ^{25}F.

What is the role of continuum and three-body forces?
Cutoff dependence in ^{24}O and ^{25}F

- Variation of the cutoff as a tool to probe the effects of missing many-body forces.
- No unique cutoff that will reproduce data in ^{24}O and ^{25}F simultaneously.
- Three-nucleon forces are needed. Continuum coupling might bring additional binding in the low-lying states in ^{25}F.
Cutoff dependence in ^{25}O

- Cutoff dependence on the $3/2^+$ state in ^{25}O.
- Calculations done in 15 major oscillator shells with fixed oscillator frequency $\hbar \omega = 32\text{MeV}$.
- There are no two-body forces within the family of phase-equivalent low-momentum interactions derived from N3LO that will make ^{25}O unstable.
- Three-nucleon forces are needed to match theory with experiment in ^{25}O!
Conclusion

- Coupled-Cluster theory has been successfully applied to weakly bound and unbound helium isotopes.
- Derived and implemented Equation of Motion CCM; calculation of open-shell systems, excited states, density distributions and radii.
- PA-EOM Coupled-cluster method has been successfully applied to the description of weakly bound and unbound states in ^{17}O and ^{17}F.
- Coupling to the continuum plays a significant role on states close to the particle emission threshold.
- PR/PA-EOM Coupled-Cluster theory allows for *ab initio* calculations of single-particle states and the study of shell-evolution in neutron rich nuclei.
- Provide realistic single-particle energies for shell-model calculations with a core.
Future perspectives

- Revisit Helium chain with 3NF. Spin-orbit splitting in He7 and He9.
- Matter and charge radii of 11Li.
- Excited states and matter densities for dripline nuclei.
- Coupled Cluster approach to nuclear matter.
- Construction of effective interaction for shell-model calculations.
- Coupled-Cluster approach to nuclear reactions; CC-LIT and construction of optical potentials from folding procedures.
- Ab-initio description of 56Ni, 100Sn and 208Pb within reach.
Coupled Cluster for open quantum systems

Open Quantum System.
Coupling with continuum taken into account.

Closed Quantum System.
No coupling with external continuum.
Berggren Single-particle basis

Complex energies requires a generalized completeness relation

$$|\psi(r, t)|^2 = |\Phi(r)|^2 \exp\left(-\frac{\Gamma}{\hbar} t\right), \quad E = E_r - i\Gamma/2.$$

$$1 = \sum_{n=b,d} |\psi_l(k_n)\rangle\langle \tilde{\psi}_l(k_n)| + \int_{L^+} dk \, k^2 |\psi_l(k)\rangle\langle \tilde{\psi}_l(k)|.$$
Partial wave decomposition of 8He density

- N^3LO evolved down to $\lambda = 2.0\text{fm}^{-1}$ from similarity renormalization group theory.
- Neutron skin in 8He is mainly built from $s-$ and $p-$partial waves. Protons are mainly occupying $s-$ partial waves.
Matter and charge radii of ^8He using V-srg

- Λ dependence on ^8He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.
Convergence of 4He and 8He ground state energies with increasing number of partial waves in the basis.
Matter and charge radii of 4He using V-srg

- Λ dependence on 4He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.

\[R_{\text{rms}} \text{ [fm]} \]

\begin{align*}
\text{for } l_{\text{max}} = 1.375, 1.4, 1.425, 1.45 \text{ and } \Lambda = 1.43, 1.435, 1.44, 1.445, 1.45, 1.455, 1.46
\end{align*}
\(\hbar \omega \) dependence on \(^4\text{He}\) and \(^8\text{He}\) charge and matter radii.
Shell model calculations of oxygen isotopes using two-body effective interactions and second order perturbation theory.

Calculations starting from a ^{16}O core gives ^{25}O bound.

Starting from a ^{22}O core gives ^{25}O unbound in both HO and Gamow basis.

Inclusion of many-body effects crucial, continuum plays a role in the description of excited states.

Motivation

Ab-initio Coupled-Cluster approach
Open-shell nuclei and CCM

Conclusion and Perspectives

$^4-^8\text{He}$ with smooth v-lowk

Figure: Graphs showing the energy E_0 as a function of K_{max} for ^4He, ^6He, and ^8He, with different values of Λ. The graphs are compared with experimental data.

<table>
<thead>
<tr>
<th>Λ [fm$^{-1}$]</th>
<th>$E_0(^4\text{He})$</th>
<th>$E_0^\infty(^6\text{He})$</th>
<th>$E_0(K_{\text{max}} = 14)$</th>
<th>$E_0(^8\text{He})$</th>
<th>A-CCSD(T)</th>
<th>CCSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>$-29.30(2)$</td>
<td>$-30.28(3)$</td>
<td>$[-30.13]$</td>
<td>-31.21</td>
<td>$[-30.33]$</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>$-28.65(2)$</td>
<td>$-29.35(13)$</td>
<td>$[-29.13]$</td>
<td>-29.84</td>
<td>$[-28.72]$</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>$-27.40(2)$</td>
<td>$-27.62(19)$</td>
<td>$[-26.91]$</td>
<td>-27.54</td>
<td>$[-25.88]$</td>
<td></td>
</tr>
</tbody>
</table>
Convergence of CCSD results
Convergence of CCSD energy with $2n + I \leq 10$ truncation.

- 5He ground state energy starting with oscillator bases given for different $\hbar \omega$ values.
- Weak $\hbar \omega$ dependence, Results are well converged.
 \[\Delta \text{Re}[E] \sim 0.1\text{MeV}, \Delta \text{Im}[E] \sim 0.01\text{MeV} \]
Convergence of CCSD energy.

CCSD convergence of 5He ground state energy for the $s - d$ space (300 orbitals) using $n = 20$ discretization points for L^+. The calculation where performed using two very different L^+ contours.

$\Delta \text{Re}[E] = 0.0113 \text{ MeV}$

$\Delta \text{Im}[E] = 0.0025 \text{MeV}$