Recent results and future prospects of the high-energy polarized p+p program at RHIC at BNL

Bernd Surrow

Massachusetts Institute of Technology

INT Workshop - Science case for an EIC
Seattle, WA, November 16, 2010
Outline

- Selected recent results and future prospects
 - Gluon polarization
 - Quark / Anti-quark polarization
 - Transverse spin dynamics

- Experimental aspects: RHIC / PHENIX / STAR

- Theoretical foundation

- Summary and Outlook
Theoretical foundation

How do we probe the structure and dynamics of matter in ep / pp scattering?

\[d\sigma_{ep} \propto F_2 = \sum_q x e_q^2 f_q(x) \]

Momentum contribution

\[f(x) = f^+(x) + f^-(x) \]

Spin contribution

\[\Delta f(x) = f^+(x) - f^-(x) \]

Universality

Factorization

\[d\sigma_{pp} \propto f_1 \otimes f_2 \otimes \sigma_h \otimes D^h_f \]
How do we probe the structure and dynamics of matter in ep / pp scattering?

\[d\sigma_{ep} \propto F_2 = \sum_q x e_q^2 f_q(x) \]

\[W^2 \approx Q^2 / x \]

\[f(x) = f^+(x) + f^-(x) \]

\[\Delta f(x) = f^+(x) - f^-(x) \]

Universality

Factorization
Proton spin studies addressed by the RHIC Spin program

- Gluon polarization studies based on gluon initiated processes
 - Inclusive measurements of hadrons (π^0, π^\pm, η) and jets
 - Correlation measurements (Di-Jet production / Photon-Jet production)
 - Heavy-flavor production (charm / bottom)

- Quark / Anti-quark polarization
 - W production (Direct sensitivity to u/d-quark and u/d-antiquark polarization) / Charm-associated W production (s-quark polarization)
 - Lambda production (s-quark polarization)

- Transverse spin dynamics focusing on transverse single-spin asymmetry A_N
 - Transversity \otimes Collins or Interference fragmentation function (IFF) (k_T - Final-state effect)
 - Sivers mechanism probing correl. of proton spin and trans. motion of parton (k_T - Initial-state effect)
 - Higher-Twist effects
Theoretical foundation

Probing the proton spin structure in high-energy polarized p+p collisions

- Observable: Quark/Antiquark polarization (W production)
 - Longitudinal single-spin asymmetry A_L
 \[A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]
 - Parity (Spatial inversion) violating for W production!

- Observable: Gluon polarization (Jet/Hadron production)
 - Double longitudinal single-spin asymmetry A_{LL}
 \[A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \]

Observable: Transverse spin dynamics

- Transverse single-spin asymmetry A_N
 \[A_N = \frac{\sigma_\uparrow - \sigma_\downarrow}{\sigma_\uparrow + \sigma_\downarrow} \]

\[a_{LL} = \frac{\Delta \sigma_h}{\sigma_h} \]

\[\frac{\Delta f_1 \otimes \Delta f_2 \otimes \sigma_h \cdot a_{LL} \otimes D^h_f}{f_1 \otimes f_2 \otimes \sigma_h \otimes D^h_f} \]
Experimental aspects: RHIC

- RHIC pp complex - Layout
Experimental aspects: RHIC

- RHIC pp complex - Layout

- Siberian Snakes
- Absolute Polarimeter (H jet)
- PHENIX
- STAR
- Spin Rotators
- Partial Snake
- Helical Partial Siberian Snake
- Pol. H Source
- Pol. H- Source
- 200 MeV Polarimeter
- AGS polarimeters
- Strong AGS snake
- Rf Dipole
Experimental aspects: RHIC

- **RHIC pp performance**
 - **200GeV production**
 - runs at $\sqrt{s}=200\text{GeV}$:
 - Run 5 / Run 6 / Run 8 / Run 9
 - **First collisions of polarized proton beams at $\sqrt{s}=500\text{GeV}$**: Run 9

![Graph of RHIC polarized proton luminosity L delivered to PHENIX](image)
Experimental aspects: STAR

Overview

\[\eta = -\ln \left(\tan \left(\frac{\theta}{2} \right) \right) \]
Overview

- Wide rapidity coverage of STAR calorimetry (Jets / π^0 / γ / e^±) system:
 - FPD: -4.1 < \(\eta \) < 3.3
 - BEMC: -1.0 < \(\eta \) < 1.0
 - EEMC: 1.09 < \(\eta \) < 2.0
 - FMS: 2.5 < \(\eta \) < 4.0

- TPC: Tracking and PID using dE/dx for \(| \eta | < 1.3\)

- BBC/ZDC: Relative luminosity and local polarimetry
- BBC: Minimum bias trigger
Experimental aspects: PHENIX

- **Overview**
 - π^0, η, γ
 - Electromagnetic Calorimeter (PbSc/PbGl)
 \[(| \eta | < 0.35, \phi = 2 \times \pi / 2)\]
 - $\pi^\pm, e, J/\psi \rightarrow e^+e^-$
 - Drift Chamber (DC)
 - Ring Imaging Cherenkov Detector (RICH)
 - Electromagnetic Calorimeter (PbSc/PbGl)
 - $\mu, J/\psi \rightarrow \mu^+\mu^-$
 - Muon Id/Muon Tracker (1.2 < $| \eta | < 2.4 + 2\pi$)
 - π^0, η
 - MPC (3.1 < $| \eta | < 3.9 + 2\pi$)
 - **Relative Luminosity**
 - Beam Beam Counter (BBC) (3.0 < $\eta < 3.9$)
 - Zero Degree Calorimeter (ZDC)
Experimental aspects: Asymmetry measurement

- Asymmetry measurement in polarized p+p collisions

\[A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}} \]

- Require concurrent measurements:
 - Longitudinal beam polarization \(P_{1(2)} \) at STAR IR
 - Direction of polarization vector
 - Relative luminosity \(R \) of bunch crossings with different spin directions
 - Spin dependent yields of process of interest \(N_{ij} \)
Gluon polarization

Gluon polarization - Inclusive measurements

Jet

\[x_T = \frac{2p_T}{\sqrt{s}} \]

Inclusive Jet production (200GeV: Solid line / 500GeV: Dashed line)

Inclusive measurements

\(\sigma_{ij}/\sigma_{tot} \sim \eta \)

Odderon production

\(gg \quad qg \quad qq \)

Detector

Particle

Parton

\(\pi^+, \pi^0 \)

\(g, q \)

\(\Delta g, \Delta q \)

\(\Delta g, \Delta q \)
Gluon polarization - Correlation Measurements

Correlation measurements provide access to partonic kinematics through Di-Jet/Hadron production and Photon-Jet production - At LO:

\[x_1(2) = \frac{1}{\sqrt{s}} \left(p_T^3 e^{\eta_3(-\eta_3)} + p_T^4 e^{\eta_4(-\eta_4)} \right) \]

- Di-Jet production / Photon-Jet production
 - Di-Jets: All three (LO) QCD-type processes contribute: gg, qg and qq with relative contribution dependent on topological coverage
 - Photon-Jet: One dominant underlying (LO) process
 - Larger cross-section for di-jet production compared to photon related measurements
 - Photon reconstruction more challenging than jet reconstruction
 - Full NLO framework exists \(\Rightarrow \) Input to Global analysis
Gluon polarization

- PHENIX: Midrapidity Inclusive neutral pion A_{LL} measurement

- Data are well described by NLO pQCD calculations
- Run 9 A_{LL} results in agreement with previous A_{LL} measurements pointing to a small gluon polarization
Gluon polarization

- PHENIX: Midrapidity Inclusive neutral pion A_{LL} measurement

- Data are well described by NLO pQCD calculations
- Run 9 A_{LL} results in agreement with previous A_{LL} measurements pointing to a small gluon polarization
Data are well described by NLO pQCD plus hadronization and underlying event corrections

Run 6 A_{LL} measurement between GRSV-STD and GRSV-ZERO

Substantial improvement expected from Run 9 A_{LL} measurement
Gluon polarization

- Results on Δg from Global QCD analysis

- Strong constraint on the size of Δg from RHIC data
- Strong indication for a small gluon polarization!
- Next steps: Mapping of x-dependence and extension of x-coverage needed!

INT Workshop - Science case for an EIC
Seattle, WA, November 16, 2010

Results on Δg from Global QCD analysis

- Strong constraint on the size of Δg from RHIC data
- Strong indication for a small gluon polarization!
- Next steps: Mapping of x-dependence and extension of x-coverage needed!
Gluon polarization

- Results on Δg from Global QCD analysis

\[\Delta G(Q^2 = 1\, \text{GeV}^2) \approx 0.4 \]

\[\Delta G(Q^2 = 1\, \text{GeV}^2) \approx 0.1 \]

\[\Delta G(Q^2 = 1\, \text{GeV}^2) \approx -0.1 \]

- Strong constraint on the size of Δg from RHIC data
- Strong indication for a small gluon polarization!
- Next steps: Mapping of x-dependence and extension of x-coverage needed!

\[\Delta \chi^2 = 1 \]
Gluon polarization

- **STAR: Midrapidity Di-Jet A_{LL} measurement**

 - First Di-Jet A_{LL} measurement in agreement with Δg constrained by previous inclusive jet result, i.e. small gluon polarization preferred!
 - Run 9 data: Improved stat. precision
 - Constraining x dependence - Crucial input to Global QCD analysis!

- **Data are well described by NLO pQCD plus hadronization and underlying event corrections**

- **Dijet Cross Section**
 - $\int L dt = 5.39 \text{ pb}^{-1}$
 - Preliminary Run 6

- **Systematic Uncertainty**
 - Theory:
 - NLO pQCD + CTEQ6M
 - Had. and UE. Corrections

Notes

- Improved statistical precision
- Crucial input to Global QCD analysis!
Gluon polarization

Di-Jet projections at 200GeV

\[M = \sqrt{x_1 x_2 s} \]

\[x_1 (2) = \frac{1}{\sqrt{s}} \left(p_{T3} e^{\eta_3 (-\eta_3)} + p_{T4} e^{\eta_4 (-\eta_4)} \right) \]
Gluon polarization

- Di-Jet projections at 200GeV

\[M = \sqrt{x_1 x_2 s} \]

\[x_1 (2) = \frac{1}{\sqrt{s}} \left(p_{T3} e^{\eta_3 (-\eta_3)} + p_{T4} e^{\eta_4 (-\eta_4)} \right) \]

\[\eta_3 + \eta_4 = \ln \frac{x_1}{x_2} \]
Gluon polarization

- Inclusive Jet and Di-Jet projections at 500GeV

- High precision at $\sqrt{s} = 500$GeV at small x
 (W program demands large data sample ~300pb$^{-1}$) for
 - Inclusive channels (Here: Inclusive Jets)
 - Correlations measurements (Here: Di-Jets)
Gluon polarization

- Photon-Jet projections
 - Strong direct impact on $\Delta g(x)$
 - Dedicated effort towards first photon analysis from STAR
 - Projections are for EEMC acceptance / FMS will reach lower x region (Few 10^{-3})

The graph shows the gluon polarization projection for EEMC Photon + BEMC Jet. The projections are for different experimental conditions:

- $\int Ldt=50$ pb$^{-1}$, $Plo=0.6$, $\sqrt{s}=200$ GeV
- $\int Ldt=300$ pb$^{-1}$, $Plo=0.5$, $\sqrt{s}=500$ GeV

The background A_{LL} subtraction assumes DSSV, and the LDA Efficiency is approximately 70% with purity around 25%.

The data points come from various experiments:
- COMPASS
- HERMES
- SMC
- DSSV $Q^2 = 100$ GeV2
- GRSV STD $Q^2 = 100$ GeV2

The x-axis represents the gluon x value, and the y-axis shows the change in gluon polarization ($\Delta G/G$).
W boson measurements at mid-rapidity and forward/backward rapidity

\[
\begin{align*}
\Delta d + \bar{u} &\rightarrow W^- \\
\Delta \bar{u} + d &\rightarrow W^- \\
\Delta \bar{d} + u &\rightarrow W^+ \\
\Delta u + \bar{d} &\rightarrow W^+
\end{align*}
\]

- **Key signature:** High \(p_T \) lepton (\(e^-/e^+ \))
 - (Max. \(M_W/2 \)) - Selection of \(W^+/- \):
 - Charge sign discrimination of high \(p_T \)
 - lepton
- **Required:** Lepton/Hadron discrimination

\[
y_I = y_W + \frac{1}{2} \ln \frac{1 + \cos \theta^*}{1 - \cos \theta^*}
\]

\[
p_T = p_T^* = \frac{M_W}{2} \sin \theta^*
\]

\[
x_1 = \frac{M_W}{\sqrt{s}} e^{y_W}
\]

\[
x_2 = \frac{M_W}{\sqrt{s}} e^{-y_W}
\]

\[
\frac{M_W}{\sqrt{s}} = 0.16
\]

Quark / Anti-quark polarization

\[
\begin{align*}
\text{Total cross-section: } &109.9 \text{ pb} \\
\text{Total cross-section: } &20.5 \text{ pb} \\
\text{Total cross-section: } &42.0 \text{ pb}
\end{align*}
\]

\[
\begin{align*}
\text{Total cross-section: } &134.7 \text{ pb} \\
\text{Total cross-section: } &14.3 \text{ pb} \\
\text{Total cross-section: } &8.0 \text{ pb}
\end{align*}
\]

\[
\begin{align*}
\text{Total } (\sqrt{s}=500 \text{ GeV}) \sigma(W^+) &= 135 \text{ pb} \text{ and } \\
\sigma(W^-) &= 42 \text{ pb}
\end{align*}
\]
W boson measurements at mid-rapidity and forward/backward rapidity

\[\Delta d + \bar{u} \rightarrow W^- \]
\[\Delta \bar{u} + d \rightarrow W^- \]
\[p \]
\[W^+ (W^-) \]
\[\nu_e (\bar{\nu}_e) \]
\[e^+ (e^-) \]
\[\Delta \bar{d} + u \rightarrow W^+ \]
\[\Delta u + \bar{d} \rightarrow W^+ \]

Key signature: High p_T lepton (e^+/e^-)
(Max. $M_W/2$) - Selection of W^+/W^-:
Charge sign discrimination of high p_T lepton

Required: Lepton/Hadron discrimination

\[y_l = y_W + \frac{1}{2} \ln \frac{1 + \cos \theta^*}{1 - \cos \theta^*} \]
\[p_T = p_T^* = \frac{M_W}{2} \sin \theta^* \]
\[x_1 = \frac{M_W}{\sqrt{s}} e^{y_W} \]
\[x_2 = \frac{M_W}{\sqrt{s}} e^{-y_W} \]
\[\frac{M_W}{\sqrt{s}} = 0.16 \]

Bernd Surrow
- **W boson kinematics**

 - Leptonic rapidity inherits relation to mean x
 - Forward rapidity: $\eta > 0$
 - $<x_1>$ larger than $<x_2>$
 - Backward rapidity: $\eta < 0$
 - $<x_1>$ less than $<x_2>$
 - Mid-rapidity: $\eta \sim 0$
 - $<x_1>$ similar to $<x_2>$

 ![Graphs showing W boson kinematics](image)

< $X_{1,2} > \approx \frac{M_W}{\sqrt{S}} e^{[\pm \eta/2]}$
Quark / Anti-quark polarization

Probing the quark flavor structure using W boson production

\[p^+ p \rightarrow W^\pm + X \rightarrow e^\pm + X \]

STAR \(\sqrt{s} = 500 \text{ GeV} \)

25 < \(E_T^e \) < 50 GeV

\[A_L^W = \frac{\Delta d}{\bar{u}} \]

\[A_L^W = \frac{1}{2} \left(\frac{\Delta \bar{u}}{\bar{u}} - \frac{\Delta d}{d} \right) \]

\[A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

D. deFlorian et al., PRD80, 034030 (2009)
Probing the quark flavor structure using W boson production

\[p^+ + p \rightarrow W^\pm + X \rightarrow e^\pm + X \]

\[\text{STAR } \sqrt{s} = 500 \text{ GeV} \]
\[25 < E_T^e < 50 \text{ GeV} \]

\[W^- \]
\[A_L^{W^-} = -\frac{\Delta d}{\bar{d}} \]

\[W^+ \]
\[A_L^{W^+} = -\frac{\Delta u}{u} \]

\[\frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

\[\langle x_1 \rangle \ll \langle x_2 \rangle \]
\[\langle x_1 \rangle \approx \langle x_2 \rangle \]
\[\langle x_1 \rangle \gg \langle x_2 \rangle \]
W production results: W event

Run 9 - First 500GeV RHIC run: Event display

W candidate event

Z candidate event
Phenix: W^\pm reconstruction

- Run 9 data sample: 8.6pb^{-1}
- Background dominated by photon conversion before drift chamber and charged hadrons
- Total background (B):
 - e^+: 1.7 ± 1.0
 - e^-: 1.6 ± 1.0
- Total e^+/e^- cand. events (S+B):
 - e^+: 42
 - e^-: 13

Measured window: $30 < \text{E}_T < 50 \text{GeV}$
Quark / Anti-quark polarization

- STAR: W^\pm reconstruction
 - Run 9 data sample: 12pb$^{-1}$
 - Background dominated by QCD background (Data driven estimate) with smaller fractions from W boson induced τ decays ($10.4 \pm 2.8 / 0.7 \pm 0.7$) and Z^0 boson events (8.5 ± 2.0) (MC estimate)
 - Total background (B):
 - e^+: 39 ± 9
 - e^-: 23 ± 6
 - Total e^+/e^- cand. events (S+B): $25 < E_T < 50$GeV
 - e^+: 462
 - e^-: 139

Measured window: $25 < E_T < 50$GeV

Key

CHE (NLO - MRST2002) W^+
CHE (NLO - MRST2002) W^-

ATLAS PRELIMINARY W^+
ATLAS PRELIMINARY W^-

CMS PRELIMINARY W^+
CMS PRELIMINARY W^-

PHENIX W^+
PHENIX W^-

STAR PRELIMINARY W^+
STAR PRELIMINARY W^-

Measured and theory evaluated cross-sections agree within uncertainties
Theory calculations: Full NLO framework
Quark / Anti-quark polarization

- **PHENIX: Midrapidity A_L**

 - A_L result consistent with all models
 - A non-zero asymmetry (98.4% CL) is observed in the positive candidates

 ![Graph of A_L vs y for W^+Z^0, $p_T > 30$ GeV/c, $|y_e| < 0.35$](image1)

 ![Graph of A_L vs y for W^-Z^0, $p_T > 30$ GeV/c, $|y_e| < 0.35$](image2)

 - **PHENIX collaboration, submitted to PRL, arXiv:1009.0505**
PHENIX: Midrapidity A_L

$W^+ \rightarrow \mu^+$

$S/B = 3.0$

$W^- \rightarrow \mu^-$

$S/B = 0.3$

$L=150\text{pb}^{-1} / P=50\%$

η_μ (muon pseudorapidity)
Quark / Anti-quark polarization

PHENIX Muon trigger system

MuID Trigger:
Selecting momentum above 2 Gev/c

MuTRG:
Fast selection of high momentum tracks

RPC:
Provide timing information and rough position information

Adding 35 cm Fe absorber:
reduce the lower momentum hadron punch through
(S/B=3:1 instead of 1:3 without absorber)
Quark / Anti-quark polarization

- STAR: Midrapidity A_L

$$\vec{p} + p \to W^\pm + X \to e^\pm + X$$

STAR $\sqrt{s} = 500$ GeV

$25 < E_T^e < 50$ GeV

$$A_L^W = \frac{1}{2} \left(\frac{\Delta \bar{u}}{u} - \frac{\Delta \bar{d}}{d} \right)$$

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$
Quark / Anti-quark polarization

- STAR: Midrapidity A_L

\[\vec{p} + p \rightarrow W^\pm + X \rightarrow e^\pm + X \]

STAR $\sqrt{s} = 500$ GeV

$25 < E_T^e < 50$ GeV

\[A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

- Syst. uncertainty due to background, w/o pol. norm. uncertainty of 9.2%

- W^-
 - RHICBOS
 - DNS-K
 - DNS-KKP
 - DSSV08

- W^+
 - CHE
 - DSSV08
Quark / Anti-quark polarization

- **STAR: Midrapidity A_L**

 \[A_L^{W^-} = 0.14 \pm 0.19 \text{ (stat.)} \pm 0.02 \text{ (syst.)} \pm 0.01 \text{ (norm.)} \]
 \[A_L^{W^+} = -0.27 \pm 0.10 \text{ (stat.)} \pm 0.02 \text{ (syst.)} \pm 0.03 \text{ (norm.)} \]

- $A_L(W^+)$ negative with a significance of $\sim 3 \sigma$

- $A_L(W^-)$ central value positive

- Measured asymmetries are in agreement with theory evaluations using polarized pdf’s (DSSV) constrained by polarized DIS data

 \Rightarrow Universality of helicity distr. functions!

\[\vec{p} + p \rightarrow W \pm + X \rightarrow e^\pm + X \]

STAR $\sqrt{s} = 500$ GeV

$25 < E_T^e < 50$ GeV

\[A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

Syst. uncertainty due to background, w/o pol. norm. uncertainty of 9.2%
Quark / Anti-quark polarization

- **STAR: Midrapidity A_L**

 - $A_L^{W^-} = 0.14 \pm 0.19$ (stat.) ± 0.02 (syst.) ± 0.01 (norm.)

 - $A_L^{W^+} = -0.27 \pm 0.10$ (stat.) ± 0.02 (syst.) ± 0.03 (norm.)

- $A_L(W^+)$ **negative** with a significance of $\sim 3 \sigma$

- $A_L(W^-)$ **central value positive**

- Measured asymmetries are in agreement with theory evaluations using polarized pdf's (DSSV) constrained by polarized DIS data

 ⇒ Universality of helicity distr. functions!

\[\bar{p} + p \rightarrow W^\pm + X \rightarrow e^\pm + X \]

$\sqrt{s} = 500$ GeV

25 < E_T^e < 50 GeV

istributions of W^+ and W^-

Projected uncertainties

Simulated data (S/B=5)

W^+

W^-

RHICBOS

DNS-K

DNS-KKP

DSSV08

CHE

DSSV08

$L = 100$ pb$^{-1}$, $P = 50\%$
Quark / Anti-quark polarization

- **STAR: Midrapidity** A_L

 $A_L^{W^-} = 0.14 \pm 0.19$ (stat.) ± 0.02 (syst.) ± 0.01 (norm.)

 $A_L^{W^+} = -0.27 \pm 0.10$ (stat.) ± 0.02 (syst.) ± 0.03 (norm.)

- $A_L(W^-)$ **negative** with a significance of $\sim 3\sigma$

- $A_L(W^-)$ central value **positive**

- Measured asymmetries are in agreement with **theory evaluations** using polarized pdf’s (DSSV) constrained by polarized DIS data

 \Rightarrow Universality of helicity distr. functions!
Quark / Anti-quark polarization

- STAR Forward GEM Tracker
Quark / Anti-quark polarization

- **STAR Forward GEM Tracker**
 - FGT: 6 light-weight triple-GEM disks using industrially produced GEM foils (Tech-Etch Inc.)
 - New mechanical support structure
 - Expected installation: Summer 2011
Quark / Anti-quark polarization

STaR W Impact on polarized QCD sea

D. deFlorian and W. Vogelsang, PRD81, 094020 (2010)

Include W results at RHIC (PHENIX and STAR) assuming -2 < \eta < 2 with 200pb⁻¹

Strong constrain for x>0.05

INT Workshop - Science case for an EIC
Seattle, WA, November 16, 2010
Quark / Anti-quark polarization

- **Lambda production**
 - Initial measurements of Lambda production at mid-rapidity
 - High-p_T region important
 - Measurements at forward rapidity very promising!

- **Charm-associated W production**
 - Discussed in RHICII White paper (BNL-77334-2006-IR) to probe Δs
 - Large luminosity, higher CME and forward instrumentation important!

K. Sudoh, 2005

W^+ (m_c=1.2GeV, Q^2=M^2_w, \sqrt{s}=500GeV) \sim 4pb
W^- (m_c=1.2GeV, Q^2=M^2_w, \sqrt{s}=500GeV) \sim 2pb
Quark / Anti-quark polarization

- Larger CME - 650GeV

Cross-section ($p_T > 25\text{GeV}$) is about a factor two larger for W^+/W^-

<table>
<thead>
<tr>
<th></th>
<th>W^+ (pb)</th>
<th>W^- (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500GeV</td>
<td>86.5</td>
<td>27.0</td>
</tr>
<tr>
<td>640GeV</td>
<td>161.9</td>
<td>58.2</td>
</tr>
<tr>
<td>Ratio (650GeV/500GeV)</td>
<td>1.9</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Larger CME - 650GeV

Cross-section ($p_T > 25\text{GeV}$) is about a factor two larger for W^+/W^-

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>$W^+ (\text{pb})$</th>
<th>$W^- (\text{pb})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>500GeV</td>
<td>86.5</td>
<td>27.0</td>
</tr>
<tr>
<td>640GeV</td>
<td>161.9</td>
<td>58.2</td>
</tr>
<tr>
<td>Ratio (650GeV/500GeV)</td>
<td>1.9</td>
<td>2.2</td>
</tr>
</tbody>
</table>
\[A_L \] \(W \) asymmetries at 650\,GeV

Asymmetry \(A_L \) for \(W^+ / W^- \) for \(p_T > 25\,\text{GeV/c} \) shows very small change from 500\,GeV to 650\,GeV (30\% change)
Quark / Anti-quark polarization

Polarized He-3 operation

$A_L^{W^+}$ (p_T > 20 GeV) pp @ 500 GeV

Δu

- DSSV
- GRSV (std)
- GRSV (val)
- DSSV $\Delta \chi^2 = 1$

$\Delta \bar{d}$

He3-p @ 432 GeV

$A_L^{W^-}$ (p_T > 20 GeV)

Δd

- $x_0 = 0.67$

$\Delta \bar{u}$

- DSSV with $\Delta d/d \rightarrow 1$ as $x \rightarrow 1$

- GRSV (std)
- GRSV (val)
- DNS (KRE)
- DNS (KKP)

D. deFlorian and W. Vogelsang, PRD81, 094020 (2010)

M. Stratmann, 2010
Transverse spin dynamics

\[A_N \text{ measurements at RHIC} \]

\[p+p \rightarrow \pi^0+X \text{ at } \sqrt{s}=200 \text{ GeV} \]

- Large transverse single-spin asymmetries at forward rapidities at \(\sqrt{s}=200\text{GeV} \)
 and \(\sqrt{s}=62.4\text{GeV} \)

- Cross-sections are consistent with pQCD calculations

- Sivers mechanism: Asymmetry in the forward jet or \(\gamma \) production
 - Sensitive to proton spin - parton transverse motion correlations

- Collins mechanism: Asymmetry in the forward jet fragmentation
 - Sensitive to transversity

\[\eta = 3.1 < \eta < 3.7 \]
Transverse spin dynamics

A_N measurements (Eta, p_T dependence)

- Large measured A_N for forward eta production
- Measured p_T dependence not understood!
Transverse spin dynamics

- **Sivers effect sign change - Drell Yan**
 - Expect sign difference for Sivers effect between SDIS processes (attractive) and Drell-Yan processes (repulsive)
 - Plans for Drell-Yan experiments at RHIC:
 - **STAR / PHENIX**: Long-term upgrading forward direction
 - **Two LOI** presented at June 2010 PAC meeting:
 - **Collider mode**: Initial implementation in progress (RHIC IP2)
 - **Fixed target mode** (Long-term)
 - **PAC recommendation**: Test of 3 IR operation (Luminosity impact) during Run 11 (1-2 days)
 - **ANDY at IP2**:
 - $\eta > 3$
 - $M > 4\text{GeV}$
 - $\sqrt{s} = 500\text{GeV}$
Transverse spin dynamics

- Sivers effect sign change -
 Other related measurements
 - $W A_N$ measurements (Several authors)
 - Photon final state measurements of A_N

- Diffractive measurements
 - Elastic pp scattering
 - Single diffraction
 - Central production: Glueball

A. Metz and J. Zhou, arXiv:1006.3097

$pp \rightarrow pp$ at $\sqrt{s} = 200$ GeV

STAR Preliminary
Summary

- High-energy polarized p-p program
 - Transverse spin measurements presented: Deepening understanding on A_N dynamics / Transversity extraction
 - First global analysis incl. RHIC SPIN data ⇒ Evidence for small gluon polarization for $0.05 < x < 0.2$
 - Correlation measurements (Di-Jets / γ -Jets) will allow to provide needed constrain on the partonic kinematics ⇒ First Di-Jet A_{LL} and cross-section measurement at RHIC at $\sqrt{s}=200\text{GeV}$
 - First Run 9 W result (Cross-section and A_L for W^+/W^- at mid-rapidity) important milestone!
 - W program: Important information constraining the QCD sea, i.e. u/d antiquarks
Outlook

Outlook - RHIC SPIN

- **Three key elements:**
 - **Gluon polarization**
 - **Quark / Anti-Quark Polarization**
 - **Transverse spin dynamics**

<table>
<thead>
<tr>
<th>Recorded Luminosity</th>
<th>Main physics Objective</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>~50pb⁻¹</td>
<td>Gluon polarization using di-jets and precision inclusive measurements</td>
<td>200 GeV</td>
</tr>
<tr>
<td>~100pb⁻¹</td>
<td>W production (Important consistency check to DIS results - Phase I) Gluon polarization (Di-Jets / Photon-Jets)</td>
<td>500 GeV</td>
</tr>
<tr>
<td>~300pb⁻¹</td>
<td>W production (Constrain antiquark polarization - Phase II) Gluon polarization (Di-Jets / Photon-Jets)</td>
<td>500 GeV</td>
</tr>
<tr>
<td>~30pb⁻¹</td>
<td>Transverse spin gamma-jet</td>
<td>200 GeV</td>
</tr>
<tr>
<td>~250pb⁻¹</td>
<td>Transverse spin Drell-Yan (Long term)</td>
<td>200 GeV</td>
</tr>
</tbody>
</table>

INT Workshop - Science case for an EIC
Seattle, WA, November 16, 2010
Bernd Surrow
LSS (1)
- New DSSV
 - Include COMPASS SDIS results