eA collisions within GiBUU

K. Gallmeister, U. Mosel

Model
Pythia, GiBUU, prehadronic FSI

Results
EMC@100-280
Hermes@27
CLAS@5
EIC
Observables, Experiments

\[R^h(z_h, \ldots) = \frac{N_h(z_h, \ldots)}{N_e(\ldots)} \bigg|_A \]

\[\Delta p_T^2 = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D \]

- hadronic: \(z_h = \frac{E_h}{\nu}, \ p_T, \ldots \)
- photonic: \(\nu, Q^2, W, x_B, \ldots \)

Experiments

\[E_{\text{lepton}} = \]

- EMC \(100 \ldots 280 \text{ GeV} \)
- Hermes \(27 \text{ GeV} \)
 \(12 \text{ GeV} \)
- CLAS \(12 \text{ GeV} \) (upgrade)
 \(5 \text{ GeV} \)
- EIC \(\text{ e.g. } 3+30 \text{ GeV} \)

...multiple combinations of targets
Model

\(\gamma^* N \rightarrow X \) using PYTHIA

additional:
- binding energies
- Fermi motion
- Pauli blocking
- coherence length effects

extended for exclusive channels

propagation of final state \(X \) within GiBUU transport model

http://gibuue.physik.uni-giessen.de

- elastic/inelastic scatterings (coupled channels)
- experimental acceptance
Model: Hadronization in String Model (Pythia/Jetset)

3 times/points per particle:
- "Production 1“ String-Breaking
- "Production 2“ String-Breaking
- "Formation“ Line Meeting

leading vs. non-leading

XS evolution scenarios:

CT
Results: EMC & Hermes

- Constant cross section

 \[t = t_P \cdots t_F : \]

 \[\sigma^* = 0.5 \sigma_H \]

- Quadratic increase

 \[\sigma^* = \left(\frac{t - t_P}{t_F - t_P} \right)^2 \sigma_H \]
Results: EMC & Hermes

\[
\frac{\sigma^*}{\sigma_H} = \frac{r_{\text{lead}}}{Q^2} + \left(1 - \frac{r_{\text{lead}}}{Q^2} \right) \left(\frac{t - t_P}{t_F - t_P} \right)
\]

EMC@100...280 GeV
and
Hermes@27 GeV
described simultaneously

pedestal value?
…small effect!
here: averaged times
in code: individual times
Averaged Times

\[\tau_F \sim m_H \]
Hermes@27: A. Airapetian et al., NPB780(2007)1

Pions

- $^{2}d_{1}$
- $^{4}He_{2}$
- $^{20}Ne_{10}$
- $^{84}Kr_{36}$
- $^{131}Xe_{54}$

no diffractive
CLAS@5, π^+ : selected (ν, Q^2) bins

Data:
- CLAS preliminary
- no error bars shown

Calculations:
- not tuned !!!
- no Fermi Motion
 (W<2 GeV possible)
- no potentials

As good as at higher energies!
EIC@3+30: hadrons

Strong dependence on Q^2
EIC@3+30: π^0 vs. η

Figure 4. Multiplicity ratio for HERMES neutral pions from a Xenon target together with calculations in an energy loss model29 calculation from 2007 and in an absorption model30 for neutral pions and the eta meson. These calculations suggest that the comparison of η and π^0 will distinguish between these two reaction mechanisms.
Slow Neutrons & interaction point

Pauli Blocking

Evaporation, Binding etc.: GiBUU afterburner (Gaitanos)
Hermes@27: p_T Broadening

$$\Delta p_T^2 = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

Default: normal attenuation

In-Medium modifications:

$$\langle k_T^2 \rangle_{Xe} = (0.44 \text{ GeV})^2 \quad \rightarrow \quad (0.50 \text{ GeV})^2$$

$$\langle \sigma_p \rangle_{Xe} = 0.36 \text{ GeV} \quad \rightarrow \quad 0.40 \text{ GeV}$$

data: Y.van Haarlem et al., arXiv:0704.3712 [hep-ex]
In-Medium modifications:

Default:

normal attenuation

In-Medium modifications:

\[\langle k_T^2 \rangle_{\text{Xe}} = (0.44 \text{ GeV})^2 \]
\[\rightarrow (0.50 \text{ GeV})^2 \]
\[(\sigma_p)_{\text{Xe}} = 0.36 \text{ GeV} \]
\[\rightarrow 0.40 \text{ GeV} \]

data: A. Airapetian et al., NPB 780 (2007) 1
Conclusions

GiBUU:
- coupled channel transport code (semi classical)
- from some MeV to tens of GeV (Pythia v6.4 for high energy)
- multi purpose: p, π, γ^*, ν – induced reactions
 Heavy Ion Collisions

pre-hadron cross section: linear in time
 (EMC,Hermes,CLAS)

Transverse momentum broadening
- attenuation leads to broadening
- medium modification of fragmentation parameters ???

EIC: important for testing FSI at beginning of hadronization

Cold Nuclear Matter as baseline for Heavy Ion Collisions
understand hadronic FSI

- proton, pion beam
- beam energies: 3 – 30 GeV/c
- critical test for hadronic fsi

aim: adjust flux for …
- MiniBooNE
- SciBooNE
- K2K
elementary: $pp \rightarrow \pi^{\pm} X$

Pythia v6.4 describes elementary data very well

\[\pi^\pm \text{Pb} \rightarrow \pi^\pm X \text{ (forward, 12 GeV/c)} \]

data: M.G. Catanesi et al. (HARP), arXiv:0902.2105 [hep-ex]

- forward production described very well
- pion beam slightly better described than proton beam
\[pA \rightarrow \pi^+ X \text{ (backward, 3 GeV/c)} \]
Conclusions

GiBUU:
- coupled channel transport code (semi classical)
- from some MeV to tens of GeV (Pythia v6.4 for high energy)
- multi purpose: p, π, γ^*, ν – induced reactions

 Heavy Ion Collisions

pre-hadron cross section: linear in time

 (EMC,Hermes,CLAS)

Transverse momentum broadening
- attenuation leads to broadening
- medium modification of fragmentation parameters ???

HARP: Critical test for hadronic FSI

Cold Nuclear Matter as baseline for Heavy Ion Collisions