In-Medium Hadronization

Raphaël Dupré

Argonne National Laboratory
Outline

- Introduction
- Existing data and open questions
- The energy loss scenario
- What can we do with an EIC?
- Conclusion
Parton Propagation and Fragmentation

- What are we measuring and why?
 - The fragmentation time scales to understand the dynamic of hadronization
 - The in-medium energy loss to characterize our medium

Observables

- P_T distribution broadening in Cold Nuclear Matter

\[\Delta P_T^2 = \langle P_T^2 \rangle_A - \langle P_T^2 \rangle_D \]

- Attenuation of hadrons measured in Cold Nuclear Matter with

\[R_A^h(Q^2, x_{Bj}, z, P_T) = \frac{N_A^h(Q^2, x_{Bj}, z, P_T) / N_A^e(Q^2, x_{Bj})}{N_D^h(Q^2, x_{Bj}, z, P_T) / N_D^e(Q^2, x_{Bj})} \]
Existing and future experimental data

- EMC, SLAC & E665

- HERMES data (27.6 GeV beam)
 - Open several questions

- CLAS data are still analyzed (5 GeV beam)
 - Some preliminary results in few slides
 - Answer questions?

- Planned experiment at CLAS 12 (11 GeV beam)
 - “Quark Propagation and Hadron Formation” proposal, K. Hafidi et al.
HERMES multiplicity ratio

Solutions for K/π absorption difference

- Hadron absorption
 - Cross section of $\pi > K^+$

- Energy loss / Medium modified FF
 - Gluon enhancement
Solutions for K/π broadening difference

- Hadron absorption
 - Elastic cross section of $K^+ > \pi$

- Energy loss
 - Quark flavor dependence
CLAS Multiplicity Ratio

- The multi-dimensional binning reveal an underlying structure
- The description of ν is dependent of z

The study of ΔP_T^2 show a dependence with ν

Indication of non linearity with $A^{1/3}$
PyQM: Energy Loss Based Simulation

- PYTHIA is both used for
 - Parton level generator
 - Lund fragmentation of the products

- Apply BDMPS energy loss calculation to modify partons
 - Calculation from Salgado and Wiedmann (2002)
 - Attribute a transverse momentum according to the energy loss
Simulation Compared to HERMES Data (pions)

\[q \text{ hat} = 0.55 \text{ GeV}^2 \text{ fm}^{-1} \]
Simulation Compared to HERMES Data (Kaons)

$q \text{ hat} = 0.55 \text{ GeV}^2 \text{ fm}^{-1}$

Oct 4th 2010 INT EIC Workshop - Raphaël Dupré
Simulation Compared to HERMES Data

\[q \hat{=} 0.015 \text{ GeV}^2 \text{ fm}^{-1} \]
Simulation Compared to HERMES Data

\[q \text{ hat} = 0.015 \text{ GeV}^2 \text{ fm}^{-1} \]
What do we learn from the energy loss simulation?

- Model reliable at high z only
 - Impossible to simulate target fragmentation with PYTHIA
 - No simple way to simulate gluon emission in the nuclear medium
 - Nevertheless it reproduce nicely data on a large scale

- Fundamental inconsistency in q hat determination

- P_T is approximated
 - Transverse momentum distribution is a difficult observable to reproduce
Interesting observables at EIC energies

- **Light Quarks**
 - π^0, η comparison (energy loss vs prehadron absorption)
 - Verify that Ratio → 1 at large v as indicated by EMC
 - p_T-broadening:
 - vs. Q^2 - to understand HERMES data growing values
 - vs. z - for precision tests of theory models
 - Cronin effect at large p_T - test of fragmentation vs. recombination

- **Heavy Quarks**
 - heavy vs. light mesons in general
 - B vs D mesons (heavy flavor puzzle)

- **Jets**
 - Jet rates as a function of cone radius - gluon radiation will broaden jets
 - Semi-inclusive jet p_T-broadening - direct parton p_T-broadening
 - Compare to jets at RHIC

see https://eic.jlab.org/wiki/index.php/EA_Parton_propagation_and_fragmentation
π vs η to discriminate between processes

![Graphs showing energy loss and absorption models for Xe with data points for EIC η and π⁰, and HERMES π⁰.](Curves by A. Accardi)
Information from energy loss / Δp_t^2

- Energy loss calculations are linked with gluon content of the nuclei characterized by $q\hat{\alpha}$

- Recent work from Kopeliovich et al. Link directly the Δp_t^2 to the saturation scale

- Precise calculation of the process remain challenging
 - Quark flavor dependence for example

- Δp_t^2 of jets as direct measurement of $q\hat{\alpha}$
Multiplicity ratios going to 1

- Multiplicity ratios should go to 1 around $\nu \sim 100$ GeV

- This feature from EMC measurement need to be refined especially in function of z
 - Arvidson et al. (EMC) *Nucl. Phys. B246* 381-407, 1984

- Permit to separate energy loss from contamination by hadron absorption process

- Flavor dependence need to be checked with a large sample of particles to discriminate absorption effects
Target fragmentation

- Target fragmentation can permit to access energy loss from the other side and check consistency in the models

- Slow moving protons can give information on the impact parameter
Heavy quarks

- Numerous interests (see previous talk)

- By opposition with light particles, the multiplicity and the detection issues make their measurement challenging

- Following error bars predictions are based on PYTHIA simulation
Projection at EIC energies

11 GeV e^- on 30 GeV/n iron at $L = 0.4 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ for a month
Projection at EIC energies

- $z > 0.4$
- DIS
- $0.1 < y < 0.8$

- $3 - 30$ GeV
 - 4×10^{34} cm$^{-2}$ s$^{-1}$

- $11 - 30$ GeV
 - 4×10^{32} cm$^{-2}$ s$^{-1}$

- $4 - 100$ GeV
 - 1.5×10^{32} cm$^{-2}$ s$^{-1}$
Measurement issues

- For transverse momentum broadening it is necessary to have good resolution in angles due to the size of the measured effect.

- Zero angle nucleon detector can be very useful to explore the target fragmentation and slow nucleon production.

- Heavy quark identification can be achieved on a large scale only with high precision vertex determination <50μm.

- B mesons measurement require high luminosity.
Overview of the MC efforts in our group and future developments

- PYTHIA add-on
 - Fermi motion, BDMPS energy loss with Lund fragmentation (this work)

- Bose-Einstein Correlation
 - J. Gilfoyle presentation next week

- PYTHIA modification (based on Q-PYTHIA)
 - Adapt it to cold nuclear matter geometry
 - Extend it to treat HT energy loss (Majumder)

- Jet analysis with PYTHIA or (better) Q-PYTHIA

Which EIC configuration?

- For light particles, all configurations can give good results

- The main parameter for heavy quark production is the luminosity (D accessible with few 10^{32}, B with few 10^{33} cm$^{-2}$ s$^{-1}$)

- It would be interesting to cover ν in those regions:
 - $\nu < 100$ GeV to measure multiplicity ratios
 - $\nu > 300$ GeV to measure pure energy loss (through jets for example)
 \[\rightarrow s \sim 1000 \text{ GeV}^2 \]

- We need a strategy for heavy quark detection
Summary

- Dominant process to model hadronization in nuclei is still controversial, hopefully measurement are coming to answer this question.

- EIC provide a perfect tool to isolate quark energy loss process and study it:
 - Direct energy loss measurement
 - Gluon content of the nuclei

- RHIC measurements on heavy flavors lead to enhanced interest for D and B mesons in cold nuclear matter.