Exploring the three-dimensional structure of the proton and nuclei

M. Diehl

Deutsches Elektronen-Synchroton DESY

17 November 2010
Context and goals

Hadrons and nuclei ↔ quarks, antiquarks, gluons

- \(q, \bar{q}, g \) only manifest at short distance/short times
 \(\sim \) 'snapshots' of a strongly interacting system
 rather than 'structure' in a static sense

- several difficult and interesting aspects:
 confinement, gluon self coupling, chiral symmetry breaking
 highly relativistic system \((p \neq uud) \)

- aim: study quantitatively
 how hadrons and nuclei 'look like'/behave at parton level
 how partons interact inside hadrons and nuclei

1. to make progress in understanding QCD dynamics
 measurements ↔ physical picture ↔ theory

2. in some cases: use to improve quantitative description of
 \(pp/pA/AA \) collisions
Dynamics at short vs. long distances

- hard processes involve both short and long distance dynamics (inevitably have hadrons in initial and final state)
- parton splitting

- important aspect of dynamics in several contexts
- evolution eqs. in resolution scale (DGLAP) or in rapidity (BFKL, BK, etc)
- perturbative calculations, largely well understood

- but what about sea quarks/antiquarks generated by non-perturbative mechanisms?
 - different behavior of \(s \) vs. \(\bar{s} \), \(\bar{u} \) vs. \(\bar{d} \)
 - role of pion/kaon fluctuations (connected with chiral dynamics)
Longitudinal vs. transverse

- hard processes single out (at least) one spatial direction

\[r \times p \]

holds both in collision c.m. and in target rest frame

- different roles played by longitud. and transv. directions

\[\sim \] lose manifest 3dim rotation symmetry in target rest frame

- usual parton densities: **longitudinal** information

 aims: achieve high precision, details of flavor structure,
 \(q \) vs. \(\bar{q} \), polarization, nuclear effects

- **transverse** structure: much less well known

 in first instance aim to see general trends/patterns
 but often also requires high-precision measurements

- new d.o.f.: *orbital angular momentum* (classically: \(L = r \times p \))
Transverse structure: momentum vs. position

- variables related by 2d Fourier transforms, e.g.
 - quark fields \(\tilde{\psi}(k_T, z^-) = \int d^2 z_T e^{i z_T k_T} \psi(z_T, z^-) \)
 - proton states \(|p^+, b_T\rangle = \int d^2 p_T e^{-i b_T p_T} |p^+, p_T\rangle \)

\[\text{with } z^- = z^0 - z^3 \text{ and } p^+ = p^0 + p^3 \]

- fully relativistic description: localize only in 2 dimensions in 3d can only localize object within its Compton wavelength

- at level of squared amplitudes/probabilities

\[\bar{\psi}(k_T)\psi(l_T) = \int d^2 y_T d^2 z_T e^{-i(y_T k_T - z_T l_T)} \bar{\psi}(y_T)\psi(z_T) \]

\[y_T k_T - z_T l_T = \frac{1}{2} (y_T + z_T) (k_T - l_T) + \frac{1}{2} (y_T - z_T) (k_T + l_T) \]

- 'average' transv. momentum \(\leftrightarrow \) position difference
 - transv. momentum transfer \(\leftrightarrow \) 'average' position

- 'average' transv. mom. and position not Fourier conjugate

- Wigner phase space distributions \(W(x, k_T, b_T) \) give probabilities

\[\int d^2 k_T W = f(x, b_T) \text{ and } \int d^2 b_T W = f(x, k_T) \]
Access to transverse position: exclusive processes

- **DVCS and meson production** → generalized parton distrib’s

 - similar theory as for usual parton densities
 - have factorization proofs, evolution in resolution scale Q
 - longit. mom. transfer → two parton mom. fractions $x \pm \xi$
 - to LO in α_s measure $\text{GPD}(x, \xi = x, \Delta_T)$

- '1st stage' imaging: $\text{Fourier} \rightarrow \text{GPD}(x, \xi = x, b_T)$

 - no probability interpretation, but b_T = well defined transverse distance
Access to transverse position: exclusive processes

- DVCS and meson production \leadsto generalized parton distrib’s

- similar theory as for usual parton densities
 have factorization proofs, evolution in resolution scale Q

- longit. mom. transfer \leadsto two parton mom. fractions $x \pm \xi$
 to LO in α_s measure $GPD(x, \xi = x, \Delta_T)$

- ’2nd stage’: $GPD(x, \xi = x, b_T) \rightarrow GPD(x, \xi = 0, b_T)$

- density interpretation: $GPD(x, \xi = 0, b_T) = f(x, b_T)$
- access only via α_s effects \leadsto Q^2 dependence
- presently unclear how strongly extrapolation to $\xi = 0$ will depend on theoretical assumptions
Small x formulation: the dipole representation

- amplitude $N(x, r_T, b_T)$ for scattering of dipole on target naturally in b space

Fourier transf. gives $r_T \rightarrow k_T$ of quark, $b_T \rightarrow \Delta_T$ of target

- valid for small x (empirically $\lesssim 10^{-2}$)
 “x” and “ξ” do not appear as independent variables

- comparison with collinear (= GPD) formalism:
 - dipole formalism: small x limit, predicts x dependence
 large Q limit not taken, require Q large enough for pert. calc.
 - GPD form.: all x, large Q limit, predicts Q dependence
 - in double limit of large Q and small x approaches equivalent
Some trends, unknowns, predictions

- lattice calculations \(\langle b^2 \rangle \propto \text{const} + \alpha' \log \frac{1}{x} \) for gluons \(\alpha' \sim 0.15 \text{ GeV}^{-2} \) from HERA \(J/\Psi \) prod’n much smaller than in soft hadronic procs.
- at small \(x \) find \(\langle b^2 \rangle \propto \text{const} + \alpha' \log \frac{1}{x} \)
- at large \(b \) prediction from chiral dynamics \(\langle b^2 \rangle \sim e^{-\kappa b_T} / b_T \) with \(\kappa \sim 2m_\pi = (0.7 \text{ fm})^{-1} \)
- requires precise measurement at low \(\Delta_T \)
Nuclei

- coherent hard scattering on nucleus \leadsto spatial parton distr’n
 general theme: deviation from “independent nucleon approx.”

$$f_{q/A}(x, b) = f_{q/N}(\cdot, \cdot) \otimes f_{N/A}(\cdot, \cdot)$$

- nontrivial effects in saturation dynamics

 scattering on gluons from different nuclei
 merging of gluon chains from different nuclei
Spin and orbital angular momentum

- GPD $E \leftrightarrow$ nucleon helicity flip $\langle \downarrow | O | \uparrow \rangle$

\sim interference between wave functs. with L_z and $L'_z = L_z \pm 1$

no direct relation with $\langle L_z \rangle$, but indicator of large L_z

- helicity flip \leftrightarrow transverse polarization asymmetry

parton dist’s in proton polarized along x are shifted along y:

$$f^X(x, b) = f(x, b^2) - \frac{b^y}{m} \frac{\partial}{\partial b^2} e(x, b^2)$$

$$e(x, b^2) = \text{Fourier transform of } E(x, \xi = 0, \Delta_T)$$

- connection to orbital angular momentum via $b \times p$

\rightarrow talk M Burkardt, Nov 1

- shift known to be large for valence combinations $u - \bar{u}$, $d - \bar{d}$

from sum rule connecting with magnetic moments of p and n

unknown for sea quarks and gluons
Spin and orbital angular momentum

- **GPD** $E \leftrightarrow$ nucleon helicity flip \(\langle \downarrow | \mathcal{O} | \uparrow \rangle \)

 \(\sim \) interference between wave fcts. with L^z and $L'_z = L^z \pm 1$

 no direct relation with $\langle L^z \rangle$, but indicator of large L^z

- E key part of Ji’s angular momentum sum rule:

 \[
 2J^q = \int dx \, x[q(x) + \bar{q}(x)] + \int dx \, x[e^q(x) + e^{\bar{q}}(x)] \\
 2J^g = \int dx \, xg(x) + \int dx \, xe^g(x) \\
 e^a(x) = \int d^2 b \, e^a(x, b^2) = E^a(x, \xi = 0, \Delta_T = 0)
 \]

- other definitions of angular momentum exist

 much disc. in literature: Jaffe, Manohar '90; . . . ; Wakamatsu '10

 to my mind, non-uniqueness of “o.a.m.” reflects character of the system under study:

 - quarks and gluons interact
 - gauge fields contain phys. and unphys. d.o.f.
Aside: multi-parton interactions in hadron-hadron collisions

- hard inclusive process, e.g. $pp \rightarrow \text{jet jet + } X$
 - no impact parameter dependence
 - integrate over b_1 and b_2 independently

- secondary soft or hard interactions
 - do not affect inclusive cross section, but change event structure
 - will affect many analyses at LHC
 - sensitive to transverse distance between partons
 - but this distance not directly related to final-state variables

- information from GPDs can help description of mult. interactions
 - b dependence and its interplay with momentum fraction x
Transverse parton momentum: distributions and fragmentation

- factorization = possibility to disentangle dynamics into
 - hard scattering \((\text{calculate})\)
 - quantities referring only to one hadron: parton distributions, fragmentation functions

 is not trivial, should not be taken for granted

- factorization where parton transv. momentum is retained
 reveals subtle properties of QCD dynamics

- close to factorization proofs for semi-inclusive DIS, Drell-Yan,
 \(e^+e^- \rightarrow \text{back-to-back hadrons} + X\)

- possibly also achievable for \(\gamma^*p \rightarrow \text{back-to-back hadrons} + X\)

- hadron-hadron collisions: not clear if can separate “partons in one hadron” from their “environment” in the process

 \(\rightarrow\) talks P Mulders, Sep 14; T Rogers, Sep 20
Transverse momentum dependent distributions

► theoretical description of transv. momenta in final state:
 • if large then generate perturbatively = hard radiation
 • for small transv. momenta (or transv. momentum differences) described by transv. mom. dependent distributions etc.
 • no sharp boundary between “intrinsic” and “radiative” but transition between the two regimes interesting and often practically relevant

► distribution of q, \bar{q}, g at low k_T remains largely unknown
 • lattice studies, as well as constituent quark models suggest significant difference in trv. mom. distribution of u and d quarks in p → talk B Musch, Nov 3
 ⊳ should be open for surprises

► k_T dep’t gluon distribution plays prominent role at small x
 rather direct access to saturation scale $Q_s(x)$
 → talks F Yuan, Sep 14; B-W Xiao, Oct 6
The relevance of gluons “accompanying” a parton

- in general, colored objects are surrounded by gluons
 profound consequence of gauge invariance
 technically implemented in Wilson lines

- k_T dep’t distributions can be time reversal odd
 e.g. Sivers function: unpol. quarks in proton pol. along x:

$$f^X(x, k_T) = f(x, k_T^2) + \frac{k_y}{M} f_{1T}(x, k_T^2)$$

Sivers fct. has **opposite sign** when gluons couple after quark scatters (SIDIS) or before quark annihilates (DY)
would be **zero** if gluons were absent
The relevance of gluons “accompanying” a parton

- in general, colored objects are surrounded by gluons
 - profound consequence of gauge invariance
 - technically implemented in Wilson lines

- k_T dep’t distributions can be time reversal odd
 - e.g. Sivers function: unpol. quarks in proton pol. along x:

$$f^X(x, k_T) = f(x, k_T^2) + \frac{k_y}{M} f_{1T}^\perp(x, k_T^2)$$

Sivers fct. has opposite sign when gluons couple after quark scatters (SIDIS) or before quark annihilates (DY)

- would be zero if gluons were absent

- fragment’n fct’s: similar dynamics, with important differences
Orbital angular momentum again

- Sivers fct. \leftrightarrow proton helicity flip
 \sim interference of config’s with L^z and $L'_z = L^z \pm 1$
 another indicator of L^z
Orbital angular momentum again

- **Chormodynamic lensing:**
 - transverse shift in b space (described by E)
 - \sim transverse shift in k_T (described by f_{1T}^\perp)
 - generated by gluon exchange, opposite signs for SIDIS and DY
 - no calculation in full QCD (is highly nonperturbative)
 - but seen in model calculations
 - should test experimentally for different x and different parton species

- Both E and f_{1T}^\perp exist for quarks and gluons
 - could become sizeable at small x by parton splitting,
 - provided that are not small at low scale/low k_T
Connection with hadron-hadron collisions

two aspects:

▶ universality of T even dist’s, sign change of T odd dist’s between DY and SIDIS
 $= \text{test our understanding of the role of gauge field d.o.f.}$

▶ explore and quantify expected breakdown of k_T factorization in more complicated hadron-hadron processes, e.g. $pp \rightarrow \pi + X$

current understanding: not possible to disentangle “accompanying gluons” from one and the other colliding hadron
Conclusions

- semi-inclusive and exclusive procs. with measured transv. momenta
 - study trv. parton momentum and position in quantitative, theoretically controlled ways
 - require large range in Q^2 and k_T, need multi-dimensional binning
- involves many aspects, some rather concrete, others more generic
 - interplay of pert. and nonpert. phenomena
 - radiatively generated vs. nonpert. sea, flavor and spin strct.
 - transition from small to large k_T
 - spatial distribution of partons in hadron ↔ confinement
 - role of π fluctuations ↔ chiral dynamics
 - spin-orbit correlations (k_T or b_T vs. polarization)
 - orbital angular momentum
 - dynamics of gluons that accompany any colored particle
 (Wilson lines)
- large array of possible measurements, distribution functions
 - possibility to relate phenomena and discern patterns