Hadron collider phenomenology

Vittorio Del Duca

INFN LNF

INT Seattle 15 September 2010
hadron collider phenomenology is a very broad topic

I had to make drastic choices

I focused on some aspects of high Q^2 physics at CDF, D0, ATLAS, CMS
Standard Model

Past & Present: the LEP/SLD/Tevatron legacy

The Standard Model has been a spectacular success, weathering out all challenges

The comparison with the electroweak precision measurements has not changed much in the last years
Top quark production

CDF cross section is
\[\sigma = 7.50 \pm 0.48 \text{ pb} \]
relative uncertainty is
\[\Delta \sigma / \sigma = 6.4\% \]

D0 cross section is
\[\sigma = 8.18^{+0.98}_{-0.87} \text{ pb} \]
but with a smaller sample (~ 1 pb\(^{-1}\))

CDF & D0 cross sections not combined yet; likely this winter
Top quark Mass

Tevatron

Run I: 178.0 ± 4.3 GeV

Run I + II: 173.3 ± 1.1 GeV

$\Delta m/m = 0.6\%$

Theory

$\Delta m/m = 0.2 \Delta \sigma/\sigma$

$\Delta \sigma/\sigma = 6\% \Rightarrow \Delta m = 2$ GeV

the EXP error is $\Delta m = 1$ GeV

so the TH σ should be known at 3% level
W boson Mass

D0’s is world best measurement

$\Delta m_W/m_W = 0.03\%$

not changed much over last years

Tevatron average more precise than LEP’s

D0 measurement based on 500k W’s

ATLAS, CMS will collect each as many W’s after ~ 200 pb$^{-1}$
Effects on global EW fits

ElectroWeak fits point to a light Higgs boson

Moriond 10

Tree level

\[m_W = m_Z \cos \theta_W \]

One loop

\[
m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)
\]

\[
\Delta r_t = -\frac{3\alpha}{16\pi} \frac{\cos^2 \theta_W}{\sin^4 \theta_W} \frac{m_t^2}{m_W^2}
\]

\[
\Delta r_H = \frac{11\alpha}{48\pi \sin^2 \theta_W} \ln \frac{m_H^2}{m_W^2}
\]

\[\delta m_t = 1 \ \text{GeV} \Rightarrow \delta m_W(m_t) = 6 \ \text{MeV} \]

\[\delta m_W \propto m_t^2 \]

\[\delta m_W \propto \ln m_H \]
Higgs search at Tevatron

Tevatron Run II Preliminary, $L=2.0-5.4$ fb$^{-1}$

95% CL Limit/SM

LEP Exclusion

Tevatron Exclusion

- Expected
- Observed
- $\pm 1\sigma$ Expected
- $\pm 2\sigma$ Expected

10^3 vs m_H (GeV/c2)

SM=1

November 6, 2009

NLO

NNLO

LO
use m_t to estimate m_H from EW corrections

as m_t changes, large shifts in m_H

$m_H > 114.4$ GeV from direct search at LEP

$m_H = 87^{+36}_{-27}$ GeV from EW fits

At 95% CL

$m_H < 160$ GeV from EW fits

$m_H < 190$ GeV combined with direct search at LEP
the **Standard Model** is in excellent shape, but ...

- **ElectroWeak Symmetry Breaking** not tested
- neutrino masses and mixings not included
- dark matter ?
- baryogenesis ?

foremost task of the **LHC** is to understand the **EWSB**: find the **Higgs** boson or whatever else is the cause of it
LHC

- pp $\sqrt{s} = 14$ TeV $L_{\text{design}} = 10^{34}$ cm$^{-2}$ s$^{-1}$ (after 2013)
- $\sqrt{s} = 7$ TeV $L_{\text{initial}} \leq 10^{33}$ cm$^{-2}$ s$^{-1}$ (2010-2011)
- Heavy ions (e.g. Pb-Pb at $\sqrt{s} \sim 1000$ TeV)

TOTEM (integrated with CMS):
- pp, cross-section, diffractive physics

ATLAS and CMS:
- general purpose

27 km LEP ring
- 1232 superconducting dipoles $B=8.3$ T

Here:
- ATLAS and CMS

ALICE:
- ion-ion, p-ion

LHCb:
- pp, B-physics, CP-violation

Thursday, September 16, 2010
LHC at present (end of August 2010)

average luminosity \(7.08 \times 10^{30} \text{ cm}^{-2} \text{ s}^{-1} \)

peak luminosity \(1.07 \times 10^{31} \text{ cm}^{-2} \text{ s}^{-1} \)
to be increased by a factor \(10 \ (100) \) by end of 2010 (2011)

integrated luminosity \(3.7 \text{ pb}^{-1} \)
(but \(1.7 \text{ pb}^{-1} \) collected in the last week of running)
LHC at design energy and luminosity

the **LHC** will be a **SM** factory with (perhaps) lots of New Physics signals

design luminosity

\[L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1} = 10^{-5} \text{ fb}^{-1} \text{ s}^{-1} \]

integrated luminosity (per year)

\[L \approx 100 \text{ fb}^{-1} \text{ yr}^{-1} \]
With 1 fb\(^{-1}\) at 14 TeV we shall get

<table>
<thead>
<tr>
<th>final state</th>
<th>events</th>
<th>overall # of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>jets (p(_T) > 100 GeV)</td>
<td>10(^9)</td>
<td></td>
</tr>
<tr>
<td>jets (p(_T) > 1 TeV)</td>
<td>10(^4)</td>
<td></td>
</tr>
<tr>
<td>(W \rightarrow e\nu, \mu\nu)</td>
<td>2 \cdot 10(^7)</td>
<td>10(^7) (Tevatron)</td>
</tr>
<tr>
<td>(Z \rightarrow \ell\ell)</td>
<td>2 \cdot 10(^6)</td>
<td>10(^6) (LEP)</td>
</tr>
<tr>
<td>(b\bar{b})</td>
<td>5 \cdot 10(^{11})</td>
<td>10(^9) (BaBar, Belle)</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>8 \cdot 10(^5)</td>
<td>10(^4) (Tevatron)</td>
</tr>
</tbody>
</table>

even at 1 fb\(^{-1}\) luminosity, LHC beats all the other accelerators at 7 TeV, figures are reduced by a factor \(\sim 10\)
Even at 7 TeV, LHC is a copious source of SM processes, in particular lots of $W, Z, \text{top, jets}$.
LHC: present & future

calibrate the detectors, and re-discover the SM
i.e. measure known cross sections: jets, W, Z, tt

understand the EWSB/find New-Physics signals
(ranging from Z' to leptons, to gluinos in SUSY
decay chains, to finding the Higgs boson)

constrain and model the New-Physics theories

in all the steps above (except probably Z' to leptons)
precise QCD predictions play a crucial role
How do the production rates change when going from Tevatron to the LHC at 7 TeV?

Higgs: mainly gg fusion
\[\rightarrow \text{gain a factor } \sim 15 \]
SM Higgs at the LHC at 7 TeV

LHCC meeting of 5/05/10

depending on the analysis technique, discovery at 3 to 5 \(\sigma \) at \(m_H \sim 160 \text{ GeV} \)
SM Higgs at the LHC at 7 TeV

1 fb⁻¹

Exclusion: One experiment only

CMS Preliminary: projection for 7 TeV

exclusion range ~ 145 - 190 GeV
SM Higgs at the LHC at 14 TeV

... of course production rates are much bigger at 14 TeV with an adequate luminosity.

however, when energy and luminosity are fixed, the issue is to estimate accurately the significance.

i.e. to compute accurately signal and background production rates.

background = W, Z, top + n jets.

an accurate estimate of the background is the hardest thing to do.

more on that later.
MSSM neutral Higgs at the LHC at 7 TeV

LHCC meeting of 5/05/10

discovery (exclusion) down to \(\tan \beta \sim 20 \) (15) at low \(m_A \)

with 1 \(\text{fb}^{-1} \) at 7 TeV, LHC overtakes Tevatron at 10 \(\text{fb}^{-1} \) on all Higgs searches
squarks at $m \sim 350$ GeV
assume production like for top
85% qq + 15% gg
$0.85 \times 10 + 0.15 \times 1000$
→ gain a factor $\sim 150 - 200$

Z' at $m \sim 1$ TeV
qq production
→ gain a factor ~ 50
New Physics at the LHC at 7 TeV

don’t have time to cover the many New Physics production channels (please see the minutes of the LHCC meeting of 5/05/10) it suffices to say that with 1 fb⁻¹ at 7 TeV:

for SUSY, LHC will be able to discover squarks with 500 GeV < m < 1 TeV,

for dilepton resonances (Z'), sensitivity (discovery/exclusion) up to 1.5 TeV, (with 100 pb⁻¹ up to 1 TeV)

and a long list of exotica (compositeness, Randall-Sundrum gravitons, excited leptons, 4th generation quarks, large extra dimension monojets and photon pairs ...) can be probed with 0.1 - 1 fb⁻¹
New Physics caveat: tales from the past - 1

Jets at high transverse energy

CDF Collab. PRL 77 (1996) 438

excess of data over theory

Could it be contact interactions? ⇒ New Physics?

more prosaic explanation: gluon density at high x was largely unknown; use Tevatron 2-jet data to measure it:
no more excess
New Physics caveat: tales from the past - II

B production in the 90’s

discrepancy between Tevatron data and NLO prediction
B cross section in $p\bar{p}$ collisions at 1.96 TeV

\[d\sigma(p\bar{p} \rightarrow H_b X, H_b \rightarrow J/\psi X)/dp_T(J/\psi) \]

FONLL = NLO + NLL

Cacciari, Frixione, Mangano, Nason, Ridolfi 2003

use of updated fragmentation functions by Cacciari & Nason

and resummation

total x-sect is $19.4 \pm 0.3(\text{stat})^{+2.1}_{-1.9}(\text{syst}) \text{ nb}$

CDF hep-ex/0412071

good agreement with data

no New Physics
W, Z at the LHC at 7 TeV

with a few pb$^{-1}$

ATLAS, CMS have collected a few thousand W’s so far

here is the cross section with 0.2 pb$^{-1}$ presented at ICHEP 2010

W charge asymmetry at Tevatron

from the parton model

\[\sigma(W^+) \propto u(x_1)\bar{d}(x_2) \quad \sigma(W^-) \propto d(x_1)\bar{u}(x_2) \]

because the \textit{ubar} distribution in the antiproton is the same as the \textit{u} distribution in the proton, at Tevatron \(\sigma(W^+) = \sigma(W^-) \)

however the \textit{u}'s carry more proton momentum than the \textit{d}'s, so the quantity

\[A(y_W) = \frac{d\sigma(W^+)}{dy_W} - \frac{d\sigma(W^-)}{dy_W} \]

called charge asymmetry, is non zero

it has been measured by CDF & D0
W^+/W^- at the LHC

At LHC there is no W charge asymmetry: it’s $pp \rightarrow$ an even function of y_W

However, u distribution is larger than d

$\sigma(W^+) > \sigma(W^-)$

The ratio

$$R^\pm = \frac{\sigma(W^+ \rightarrow \ell^+\bar{\nu})}{\sigma(W^- \rightarrow \ell^-\nu)} = \frac{u(x_1)d(x_2)}{d(x_1)\bar{u}(x_2)}$$

Is larger than 1

Kom Stirling 2010

<table>
<thead>
<tr>
<th></th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 14$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTW 2008 LO</td>
<td>1.463 ± 0.014</td>
<td>1.365 ± 0.011</td>
</tr>
<tr>
<td>MSTW 2008 NLO</td>
<td>1.422 ± 0.012</td>
<td>1.325 ± 0.010</td>
</tr>
<tr>
<td>MSTW 2008 NNLO</td>
<td>1.429 ± 0.013</td>
<td>1.328 ± 0.011</td>
</tr>
</tbody>
</table>

R grows with x, so it decreases with \sqrt{s}

R has

- Small EXP systematics
- (N)NLO QCD corrections of $\leq 2\%$
- PDF uncertainty ~ 1-2%, driven by valence $u(x)/d(x)$ at not-so-small x
W^+/W^- at the LHC

At LHC there is no W charge asymmetry: it's $pp \rightarrow$ an even function of y_W

however, u distribution is larger than d

$\rightarrow \quad \sigma(W^+) > \sigma(W^-)$

the ratio

$$R^\pm = \frac{\sigma(W^+ \rightarrow \ell^+ \bar{\nu})}{\sigma(W^- \rightarrow \ell^- \nu)} = \frac{u(x_1) \bar{d}(x_2)}{d(x_1) \bar{u}(x_2)}$$

is larger than 1

Kom Stirling 2010

<table>
<thead>
<tr>
<th></th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 14$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTW 2008 LO</td>
<td>1.463 ± 0.014</td>
<td>1.365 ± 0.011</td>
</tr>
<tr>
<td>MSTW 2008 NLO</td>
<td>1.422 ± 0.012</td>
<td>1.325 ± 0.010</td>
</tr>
<tr>
<td>MSTW 2008 NNLO</td>
<td>1.429 ± 0.013</td>
<td>1.328 ± 0.011</td>
</tr>
</tbody>
</table>

R grows with x, so it decreases with \sqrt{s}

R has

- small EXP systematics
- (N)NLO QCD corrections of ≤ 2
- PDF uncertainty ~ 1-2%, driven by valence $u(x)/d(x)$ at not-so-small x
W^+/W^- + n jets at the LHC

assuming that we know the *u/d* ratio precisely, fixing \(\sigma_{SM} = \sigma_{SM}(W^+ + \text{jets}) + \sigma_{SM}(W^- + \text{jets}) \)

includes *tt* and *H* production, which are *W* symmetric assuming \(\sigma_{NP}(W^+ + \text{jets}) = \sigma_{NP}(W^- + \text{jets}) \)

the ratio

\[
R^\pm(n) = \frac{\sigma(W^+ \rightarrow n \text{jets})}{\sigma(W^- \rightarrow n \text{jets})}
\]

probes **New Physics in** *W* + jets

\[
f_{NP} = \frac{\sigma_{NP}}{\sigma_{SM}} = \frac{2(R^\pm_{SM} - R^\pm_{exp})}{(R^\pm_{SM} + 1)(R^\pm_{exp} + 1)}
\]

\(R^\pm_{exp} \) measured ratio

\(R \) grows with *x*, which grows with *n*

however, note that \(R \) first decreases from *n=0 to 1* then increases for *n > 1* ...
$W^+/W^- + n$ jets at the LHC

possible dynamic explanation: dominance of BFKL-like configuration for $n > 1$

in any scattering process with $s \gg t$, gluon exchange dominates

for $s \gg t$, BFKL resums the (next-to-)leading logarithmic contributions, $\ln \left(\frac{s}{t} \right)$, to the radiative corrections to gluon exchange in the t channel

in $W +$ jets, gluon exchange occurs with at least 2 jets

the dominant subprocess is $q + g \rightarrow q + W^\pm + ng$

the leading-order subprocess breakdown is

<table>
<thead>
<tr>
<th>n</th>
<th>QQ</th>
<th>Qg</th>
<th>gg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>73</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>70</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>67</td>
<td>8</td>
</tr>
</tbody>
</table>

the issue can be further analysed using
NLO production, known up to $W + 4$ jets
Berger et al. (BlackHat) 2010
Andersen VDD Maltoni Stirling 2001
Top at the **LHC** at 7 TeV

Top at $m \sim 170$ GeV
85% qq + 15% gg

$0.85 \times 5 + 0.15 \times 100$

\rightarrow gain a factor ~ 20
Top at the LHC at 7 TeV

With ~ 100 pb$^{-1}$, LHC sample comparable to Tevatron’s

With ~ a few hundred pb$^{-1}$, physics programme will look familiar
- top cross section
- top mass
- single top
- rare decays

If LHC reaches 1 fb$^{-1}$ by end 2011, and Tevatron increases yield by a factor 10, samples will still be comparable
Radiative corrections at the LHC

En passant, we have mentioned higher order corrections in

- **Higgs** exclusion limit
- background to **Higgs** production
- jets at high transverse energy
- \(b, t\) production

SM production of **W, Z, t + jets** is background to **Higgs, New Physics** processes

SUSY decay chain

signal: missing energy + 4 jets

background: **Z** (\(\rightarrow \nu\nu\)) + 4 jets
NLO cross sections: experimenter’s wishlist

2005 Les Houches

Table 42: The LHC “priority” wishlist for which a NLO computation seems now feasible.

<table>
<thead>
<tr>
<th>process ((V \in {Z, W, \gamma}))</th>
<th>relevant for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (pp \rightarrow VV) jet</td>
<td>(t\bar{t}H), new physics</td>
</tr>
<tr>
<td>2. (pp \rightarrow t\bar{t}bb)</td>
<td>(t\bar{t}H)</td>
</tr>
<tr>
<td>3. (pp \rightarrow t\bar{t} + 2) jets</td>
<td>(t\bar{t}H)</td>
</tr>
<tr>
<td>4. (pp \rightarrow VVbb)</td>
<td>(VBF \rightarrow H \rightarrow VV, t\bar{t}H, \text{new physics})</td>
</tr>
<tr>
<td>5. (pp \rightarrow VV + 2) jets</td>
<td>(VBF \rightarrow H \rightarrow VV)</td>
</tr>
<tr>
<td>6. (pp \rightarrow V + 3) jets</td>
<td>various new physics signatures</td>
</tr>
<tr>
<td>7. (pp \rightarrow VVV)</td>
<td>SUSY trilepton</td>
</tr>
</tbody>
</table>
QCD at high Q^2

- Parton model
- Perturbative QCD
 - factorisation
 - universality of IR behaviour
 - cancellation of IR singularities
 - IR safe observables: inclusive rates
 - jets
 - event shapes
World average of $\alpha_s(M_Z)$

$\alpha_s(M_Z) = 0.1184 \pm 0.0007$

$\frac{\Delta\alpha_s}{\alpha_s} = 0.6\%$

vertical line and shaded band mark the world average first time that shapes are included at NNLO

S. Bethke arXiv:0908.1135
Factorisation

is the separation between the short- and the long-range interactions

\[\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_{a/A}(x_1, \mu_F^2) f_{b/B}(x_2, \mu_F^2) \times \hat{\sigma}_{ab \to X} \left(x_1, x_2, \{ p_i^\mu \}; \alpha_S(\mu_R^2), \alpha(\mu_F^2), \frac{Q^2}{\mu_R^2}, \frac{Q^2}{\mu_F^2} \right) \]

\[X = W, Z, H, Q\bar{Q}, \text{high-}E_T\text{jets,...} \]

\(\hat{\sigma} \) is known as a fixed-order expansion in \(\alpha_S \)

\[\hat{\sigma}(\alpha_S, \mu_R, \mu_F) = (\alpha_S(\mu_R))^n \left[\hat{\sigma}^{(0)} + \left(\frac{\alpha_S}{2\pi} \right) \hat{\sigma}^{(1)}(\mu_R, \mu_F) + \left(\frac{\alpha_S}{2\pi} \right)^2 \hat{\sigma}^{(2)}(\mu_R, \mu_F) + \ldots \right] \]

\[\hat{\sigma}^{(0)} = \text{LO} \quad \hat{\sigma}^{(1)} = \text{NLO} \quad \hat{\sigma}^{(2)} = \text{NNLO} \]

LO: maximal dependence on scales. Poor convergence of expansion in \(\alpha_S \)

NLO: (usually) good estimate of x-sect

NNLO: good estimate of uncertainty
Factorisation

is the separation between the short- and the long-range interactions

\[\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_{a/A}(x_1, \mu_F^2) f_{b/B}(x_2, \mu_F^2) \]

\[\times \hat{\sigma}_{ab \to X}(x_1, x_2; \{p_i^\mu\}; \alpha_S(\mu_R^2), \alpha(\mu_F^2), \frac{Q^2}{\mu_R^2}, \frac{Q^2}{\mu_F^2}) \]

\[X = W, Z, H, Q\bar{Q}, \text{high-}E_T\text{jets, ...} \]

\(\hat{\sigma} \) is known as a fixed-order expansion in \(\alpha_S \)

\[\hat{\sigma}(\alpha_S, \mu_R, \mu_F) = (\alpha_S(\mu_R))^n \left[\hat{\sigma}^{(0)} + \left(\frac{\alpha_S}{2\pi} \right) \hat{\sigma}^{(1)}(\mu_R, \mu_F) + \left(\frac{\alpha_S}{2\pi} \right)^2 \hat{\sigma}^{(2)}(\mu_R, \mu_F) + \ldots \right] \]

\[\hat{\sigma}^{(0)} = \text{LO} \quad \hat{\sigma}^{(1)} = \text{NLO} \quad \hat{\sigma}^{(2)} = \text{NNLO} \]

\text{LO: maximal dependence on scales. Poor convergence of expansion in } \alpha_S\]

\text{NLO: (usually) good estimate of x-sect}\]

\text{NNLO: good estimate of uncertainty}
Factorisation

is the separation between the short- and the long-range interactions

\[
\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_{a/A}(x_1, \mu_F^2) f_{b/B}(x_2, \mu_F^2) \\
\times \hat{\sigma}_{ab\rightarrow X} \left(x_1, x_2, \{p_i^\mu\}; \alpha_S(\mu_R^2), \alpha(\mu_F^2), \frac{Q^2}{\mu_R^2}, \frac{Q^2}{\mu_F^2} \right)
\]

\[
X = W, Z, H, Q\bar{Q}, \text{high}-E_T\text{jets, ...}
\]

\(\hat{\sigma}\) is known as a fixed-order expansion in \(\alpha_S\)

\[
\hat{\sigma}(\alpha_S, \mu_R, \mu_F) = (\alpha_S(\mu_R))^n \left[\hat{\sigma}^{(0)} + \left(\frac{\alpha_S}{2\pi} \right) \hat{\sigma}^{(1)}(\mu_R, \mu_F) + \left(\frac{\alpha_S}{2\pi} \right)^2 \hat{\sigma}^{(2)}(\mu_R, \mu_F) + \ldots \right]
\]

\(\hat{\sigma}^{(0)} = \text{LO}\) \quad \(\hat{\sigma}^{(1)} = \text{NLO}\) \quad \(\hat{\sigma}^{(2)} = \text{NNLO}\)

\text{LO: maximal dependence on scales. Poor convergence of expansion in } \alpha_S
\text{NLO: (usually) good estimate of x-sect}
\text{NNLO: good estimate of uncertainty}
Factorisation-breaking contributions

- underlying event
- power corrections
 - MC's and theory modelling of power corrections laid out and tested at LEP where they provide an accurate determination of α_S
 - models still need be tested in hadron collisions (see e.g. Tevatron studies at different \sqrt{s})
- diffractive events
- double-parton scattering
 - observed by Tevatron CDF in the inclusive sample
 \[p\bar{p} \rightarrow \gamma + 3 \text{ jets} \]
 - potentially important at LHC
 \[\sigma_D \propto \sigma_S^2 \]
 - breakdown in dijet production at N^3LO?

Collins Qiu 2007
Power corrections at Tevatron

Ratio of inclusive jet cross sections at 630 and 1800 GeV

\[\frac{\sigma(630 \text{ GeV})}{\sigma(1800 \text{ GeV})}, \text{ with:} \]
\[\sigma(\sqrt{S}) = \sigma(\sqrt{S})_{\text{NLO}} \left(E_T \rightarrow E_T + \Lambda \right) \]
in the theory curves

Solid: \(\Lambda = 2.8 \text{ GeV} \)
Dashes: \(\Lambda = 0 \)
\(\ast \ast \): CDF

Bjorken-scaling variable

\[x_T = \frac{2E_T}{\sqrt{s}} \]

In the ratio the dependence on the pdf’s cancels

- dashes: theory prediction with no power corrections
- solid: best fit to data with free power-correction parameter \(\Lambda \) in the theory

M.L. Mangano
KITP collider conf 2004

Thursday, September 16, 2010
Factorisation in diffraction ??

diffraction in DIS double pomeron exchange in $p\bar{p}$

no proof of factorisation in diffractive events

data do not seem to support it
PDF evolution

factorisation scale μ_F is arbitrary

cross section cannot depend on μ_F

$$\mu_F \frac{d\sigma}{d\mu_F} = 0$$

implies DGLAP equations

$$\mu_F \frac{df_a(x, \mu_F^2)}{d\mu_F} = P_{ab}(x, \alpha_S(\mu_F^2)) \otimes f_b(x, \mu_F^2) + \mathcal{O}(\frac{1}{Q^2})$$

$$\mu_F \frac{d\hat{\sigma}_{ab}(Q^2/\mu_F^2, \alpha_S(\mu_F^2))}{d\mu_F} = -P_{ac}(x, \alpha_S(\mu_F^2)) \otimes \hat{\sigma}_{cb}(Q^2/\mu_F^2, \alpha_S(\mu_F^2)) + \mathcal{O}(\frac{1}{Q^2})$$

$P_{ab}(x, \alpha_S(\mu_F^2))$ is calculable in pQCD

V. Gribov L. Lipatov; Y. Dokshitzer
G. Altarelli G. Parisi
LHC opens up a new kinematic range

x range covered by HERA but Q^2 range must be provided by DGLAP evolution

100-200 GeV physics is large x physics (valence quarks) at Tevatron, but smaller x physics (gluons & sea quarks) at the LHC

rapidity distributions span widest x range

Feynman x's for the production of a particle of mass M

$$x_{1,2} = \frac{M}{14 \text{ TeV}} e^{\pm y}$$
Parton cross section

3 complementary approaches to $\hat{\sigma}$

<table>
<thead>
<tr>
<th></th>
<th>matrix-elem MC’s</th>
<th>fixed-order x-sect</th>
<th>shower MC’s</th>
</tr>
</thead>
</table>
| **final-state description** | hard-parton jets.
Describes geometry, correlations, ... | limited access to final-state structure | full information available at the hadron level |
| **higher-order effects:** loop corrections | hard to implement:
must introduce negative probabilities | straightforward to implement (when available) | included as vertex corrections (Sudakov FF’s) |
| **higher-order effects:** hard emissions | included, up to high orders (multijets) | straightforward to implement (when available) | approximate, incomplete phase space at large angles |
| **resummation of large logs** | ? | feasible (when available) | unitarity implementation (i.e. correct shapes but not total rates) |

M.L. Mangano KITP collider conf 2004
Parton shower MonteCarlo generators

- **HERWIG** B. Webber *et al.* 1992
 re-written as a C++ code (HERWIG++)

- **PYTHIA** T. Sjostrand 1994 (also re-written as a C++ code)

- **SHERPA** F. Krauss *et al.* 2003
 model parton showering and hadronisation

LHC Event Simulation
Matrix-element MonteCarlo generators

- several automated codes to yield large number of (up to 8-9) final-state partons
- can be straightforwardly interfaced to parton-shower MC’s
- ideal to scout new territory

- large dependence on ren/fact scales
 - example: Higgs (via gluon fusion) + 2 jets is $\alpha_s^4(Q^2)$
 - unreliable for precision calculations
Matrix-element **MonteCarlo** generators

- multi-parton **LO** generation: processes with many jets (or V/H bosons)
 - **ALPGEN** M.L. Mangano M. Moretti F. Piccinini R. Pittau A. Polosa 2002
 - **COMPHEP** A. Pukhov et al. 1999
 - **GRACE/GR@PPA** T. Ishikawa et al. K. Sato et al. 1992/2001
 - **HELAC** C. Papadopoulos et al. 2000

- processes with 6 final-state fermions
 - **PHASE** E. Accomando A. Ballestrero E. Maina 2004

- merged with parton showers
 - all of the above, merged with HERWIG or PYTHIA
Monte Carlo interfaces

CKKW S. Catani F. Krauss R. Kuhn B. Webber 2001
MLM L. Lonnblad 2002 M.L. Mangano 2005

procedures to interface parton subprocesses with a different number of final states to parton-shower MC’s

MC@NLO S. Frixione B. Webber 2002

POWHEG P. Nason 2004

procedures to interface NLO computations to parton-shower MC’s

Single top in MC@NLO

Frixione Laenen Motylinski Webber 2005

at low p_T, parton shower models collinear radiation

at high p_T, NLO models hard radiation
Matrix-element MonteCarlo generator at NLO

desirable to have a multi-parton NLO generator interfaced to a parton shower:
a sort of MadGraph cum MC@NLO

a step in this direction: automation of subtraction of IR divergences
Frederix Frixione Maltoni Stelzer 2009

MadGraph provides real amplitude
user inputs virtual amplitude
procedure provides subtraction counterterms
Accuracy of pQCD calculations

- **LO** $2 \rightarrow 2$ process + shower & hadronisation (HERWIG, PYTHIA, SHERPA)
- **LO** $2 \rightarrow n$ process + shower (ALPGEN, MADGRAPH/MADEVENT)
- **NLO** parton level
- **NLO** + shower (MC@NLO, POWHEG)
- **NNLO** parton level

Bottom line: use best available accuracy (ideally **NLO** + shower)
High (EXP) demand for cross sections of \(X + n \) jets
\[X = W, Z, \text{Higgs, heavy quark(s), ...} \]

Big TH community effort

To compute the NLO cross section of \(X + n \) jets, we need:
1) tree-level amplitude for \(X + (n+3) \) partons
2) one-loop amplitude for \(X + (n+2) \) partons
3) a method to cancel the IR divergences
and so to compute the cross section

3: until the mid 90’s, we did not have systematic methods
to cancel the IR divergences
2: until 2007-8, we did not have systematic methods
to compute the one-loop amplitudes
NLO cross sections (2010)

2005 Les Houches list almost completed

<table>
<thead>
<tr>
<th>process wanted at NLO</th>
<th>background to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $pp \rightarrow VV + \text{jet}$</td>
<td>$t\bar{t}H$, new physics</td>
</tr>
<tr>
<td>2. $pp \rightarrow H + 2 \text{jets}$</td>
<td>H in VBF</td>
</tr>
<tr>
<td>3. $pp \rightarrow t\bar{t}b\bar{b}$</td>
<td>$t\bar{t}H$</td>
</tr>
<tr>
<td>4. $pp \rightarrow t\bar{t} + 2 \text{jets}$</td>
<td>$t\bar{t}H$</td>
</tr>
<tr>
<td>5. $pp \rightarrow VVb\bar{b}$</td>
<td>$VBF \rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics</td>
</tr>
<tr>
<td>6. $pp \rightarrow VV + 2 \text{jets}$</td>
<td>$VBF \rightarrow H \rightarrow VV$</td>
</tr>
<tr>
<td>7. $pp \rightarrow V + 3 \text{jets}$</td>
<td>new physics</td>
</tr>
<tr>
<td>8. $pp \rightarrow VVV$</td>
<td>SUSY trilepton</td>
</tr>
<tr>
<td>9. $pp \rightarrow b\bar{b}b\bar{b}$</td>
<td>Higgs, new physics</td>
</tr>
</tbody>
</table>

$pp \rightarrow V + 4 \text{jets}$ new physics C. Berger et al (BlackHat) 2010
in the past, long time span to add one more jet to a x-section
in the last few years, huge progress

2 → 2 and 2 → 3 processes:
almost all computed and included into NLO packages

2 → 4 processes: a few computed

\[
pp \rightarrow t \bar{t} b \bar{b} \quad \text{Bredenstein Denner Dittmaier Pozzorini; Bevilacqua Czakon Papadopoulos Pittau Worek 2009}
\]

\[
pp \rightarrow Q \bar{Q} + 2 \text{ jets} \quad \text{Bevilacqua Czakon Papadopoulos Worek 2010}
\]

\[
pp \rightarrow H + 3 \text{ jets} \quad \text{(VBF) Figy Hankele Zeppenfeld 2007}
\]

\[
pp \rightarrow V + 3 \text{ jets} \quad \text{Berger et al. (BlackHat); K. Ellis Melnikov Zanderighi 2009}
\]

2 → 5 processes: just one

\[
pp \rightarrow V + 4 \text{ jets} \quad \text{Berger et al. (BlackHat) 2010}
\]
\[pp \rightarrow t \bar{t} + 2 \text{ jets} \] at NLO

Scale dependence of total \(\sigma \)-sect

\[\mu_R = \mu_F = \xi \mu_0 \quad \text{with} \quad \mu_0 = m_t \]

dots: LO
solid: NLO
dash: NLO with jet veto of 50 GeV

reducible background to \(pp \rightarrow H t \bar{t} \)

NLO/LO \(\equiv K \) factor = 0.89

Reduced theoretical error: 40-70\% at LO; 12-13\% at NLO
A C++ code based on generalised unitarity, and on-shell recursion for the rational parts computes

- real $W + 7$ parton amplitudes
- one-loop $W + 6$ parton amplitudes (leading colour)
Conclusions

an exciting period of **LHC** phenomenology is about to begin

signals and backgrounds for **Higgs** and **New Physics** are evaluated with better and better accuracy, thanks to

a lot of progress in **pQCD** in the last few years in

Monte Carlo generators

NLO computations with many jets
NLO assembly kit

example \(e^+e^- \rightarrow 3 \) jets

leading order \(|\mathcal{M}_n^{tree}|^2\)

NLO real

\[|\mathcal{M}_n^{tree}|^2 \rightarrow |\mathcal{M}_n^{tree}|^2 \times \int dPS |P_{\text{split}}|^2 = - \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} \right) |\mathcal{M}_n^{tree}|^2 + \text{fin.} \]

NLO virtual

\[d = 4 - 2\epsilon \int d^d l \ 2(\mathcal{M}_n^{\text{loop}})^* \mathcal{M}_n^{\text{tree}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} \right) |\mathcal{M}_n^{tree}|^2 + \text{fin.} \]
NLO production rates

Process-independent procedure devised in the 90’s

- Slicing: Giele Glover Kosower 1992-3
- Dipole: Catani Seymour 1996
- Antenna: Kosower 1997; Campbell Cullen Glover 1998

\[
\sigma = \sigma^{\text{LO}} + \sigma^{\text{NLO}} = \int d\sigma^B_m J_m + \sigma^{\text{NLO}}
\]

\[
\sigma^{\text{NLO}} = \int_{m+1} d\sigma^R_{m+1} J_{m+1} + \int_m d\sigma^V_m J_m
\]

The 2 terms on the rhs are divergent in \(d=4\)

Use universal IR structure to subtract divergences

\[
\sigma^{\text{NLO}} = \int_{m+1} \left[d\sigma^R_{m+1} J_{m+1} - d\sigma^R_{m+1} J_m \right] + \int_m \left[d\sigma^V_m + \int_1 d\sigma^R_{m+1} \right] J_m
\]

The 2 terms on the rhs are finite in \(d=4\)
Observables must be IR safe

observable function \(J_m \)

\(J_m \) vanishes when one parton becomes soft or collinear to another one

\[
J_m(p_1, ..., p_m) \rightarrow 0, \quad \text{if} \quad p_i \cdot p_j \rightarrow 0
\]

\(d\sigma^B_m \) is integrable over 1-parton IR phase space

\(J_{m+1} \) vanishes when two partons become simultaneously soft and/or collinear

\[
J_{m+1}(p_1, ..., p_{m+1}) \rightarrow 0, \quad \text{if} \quad p_i \cdot p_j \text{ and } p_k \cdot p_l \rightarrow 0 \quad (i \neq k)
\]

R and V are integrable over 2-parton IR phase space

observables are IR safe

\[
J_{n+1}(p_1, ..., p_j = \lambda q, ..., p_{n+1}) \rightarrow J_n(p_1, ..., p_{n+1}) \quad \text{if} \quad \lambda \rightarrow 0
\]

\[
J_{n+1}(p_1, ..., p_i, ..., p_j, ..., p_{n+1}) \rightarrow J_n(p_1, ..., p, ..., p_{n+1}) \quad \text{if} \quad p_i \rightarrow zp, \quad p_j \rightarrow (1-z)p
\]

for all \(n \geq m \)

Thursday, September 16, 2010