Nuclear effects throughout the \((x, Q^2)\) plane

Ian Cloët
(University of Washington)

Collaborators

Wolfgang Bentz
(Tokai University)

Anthony Thomas
(Adelaide University)

Perturbative and Non-Perturbative Aspects of QCD at Collider Energies
INT workshop, October 2010
Aspects of DIS on nuclear targets \[\Rightarrow\] nuclear structure functions

- Highlight opportunities provided by nuclear systems to study QCD
- Gain insight into nuclear structure from a QCD viewpoint

Present complementary approach to traditional nuclear physics

- Formulated as a covariant quark theory
- Grounded in good description of mesons and baryons
- At finite density self-consistent mean-field approach
- Bound nucleons differ from free nucleons

Possible answers to many long-standing questions: we address

- EMC effect & NuTeV anomaly

Highlight the unique opportunities provided by PV DIS on nuclei
EMC Effect

![Graph showing the EMC effect](image)

- Fundamentally challenged our understanding of nuclei.
- Immediate parton model interpretation:
 - valence quarks in nucleus carry less momentum than in nucleon.
- What is the mechanism? After more than 25 years no consensus.
- *nuclear structure, pions, 6 quark bags, rescaling, medium modification*
EMC Effect

- Understanding EMC effect critical for QCD based description of nuclei
- Need new experiments accessing different aspects of the EMC effect
- Important near term measurements
 - flavour decomposition & spin dependence of nuclear PDFs
- New experiments
 - semi-inclusive DIS, parity violating DIS, polarized DIS, Drell-Yan
Medium Modification

● 50 years of traditional nuclear physics tells us that the nucleus is composed of nucleon-like objects

● However if a nucleon property is not protected by a symmetry its value may change in medium – for example:
 ✦ mass, magnetic moment, size
 ✦ quark distributions, form factors, GPDs, etc

● There must be medium modification:
 ✦ nucleon propagator is changed in medium
 ✦ off-shell effects \((p^2 \neq M^2) \)
 ✦ Lorentz covariance implies bound nucleon has 12 EM form factors

\[
\langle J^\mu \rangle = \sum_{\alpha, \beta = +, -} \Lambda^\alpha (p') \left[\gamma^\mu f_1^{\alpha\beta} + \frac{1}{2M} i\sigma^{\mu\nu} q_\nu f_2^{\alpha\beta} + q^\mu f_3^{\alpha\beta} \right] \Lambda^\beta (p)
\]

● Need to understand these effects as first step toward QCD based understanding of nuclei
Medium Modification

- 50 years of traditional nuclear physics tells us that the nucleus is composed of nucleon-like objects
- However if a nucleon property is not protected by a symmetry its value may change in medium – for example:
 - mass, magnetic moment, size
 - quark distributions, form factors, GPDs, etc
- There must be medium modification:
 - nucleon propagator is changed in medium
 - off-shell effects ($p^2 \neq M^2$)
 - Becomes two form factors for on-shell nucleon

\[
\langle J^\mu \rangle = \bar{u}(p') \left[\gamma^\mu F_1(Q^2) + \frac{1}{2M} i\sigma^{\mu\nu} q^\nu F_2(Q^2) \right] u(p)
\]

- Need to understand these effects as first step toward QCD based understanding of nuclei
- Pions play a fundamental role in traditional nuclear physics
 - therefore expect pion (anti-quark) enhancement in nuclei

- Drell-Yan experiment set up to probe anti-quarks in target nucleus
 - \(\bar{q}q \rightarrow \mu^+\mu^- \) — E906: run \(\sim 2011 \) FNAL, E772: Alde et al., PRL. 64, 2479 (1990).
 - no pionic enhancement – very unexpected – energy loss?

- Important to understand anti-quarks in nuclei: Drell-Yan & PV DIS
DIS on Nuclear Targets

- **Why nuclear targets?**
 - only targets with $J \geq 1$ are nuclei
 - study QCD and nucleon structure at finite density

- **Hadronic Tensor:** in Bjorken limit & Callen-Gross ($F_2 = 2x \, F_1$)
 - For $J = \frac{1}{2}$ target

 $$W_{\mu \nu} = \left(g_{\mu \nu} \frac{p \cdot q}{q^2} + \frac{p_\mu p_\nu}{p \cdot q} \right) F_2(x, Q^2) + \frac{i \varepsilon_{\mu \nu \lambda \sigma} q^\lambda p^\sigma}{p \cdot q} g_1(x, Q^2)$$

 - For arbitrary J: $- J \leq H \leq J$ [2J + 1 structure functions]

 $$W^H_{\mu \nu} = \left(g_{\mu \nu} \frac{p \cdot q}{q^2} + \frac{p_\mu p_\nu}{p \cdot q} \right) F^{2H}_{2A}(x_A, Q^2) + \frac{i \varepsilon_{\mu \nu \lambda \sigma} q^\lambda p^\sigma}{p \cdot q} g^H_{1A}(x_A, Q^2)$$

- **Parton model expressions** [2J + 1 quark distributions]

 $$F^{H}_{2A}(x_A) = \sum_q e_q^2 \, x_A \left[q^H_A(x_A) + \bar{q}^H_A(x_A) \right] ; \quad \text{parity} \quad \Longrightarrow \quad F^H_{2A} = F^{-H}_{2A}$$
DIS on Nuclear Targets

- Hadronic Tensor: in Bjorken limit & Callen-Gross ($F_2 = 2x F_1$)
 - For $J = \frac{1}{2}$ target
 \[
 W_{\mu\nu} = \left(g_{\mu\nu} \frac{p \cdot q}{q^2} + \frac{p_\mu p_\nu}{p \cdot q} \right) F_2(x, Q^2) + \frac{i \varepsilon_{\mu\nu\lambda\sigma} q^\lambda p^\sigma}{p \cdot q} g_1(x, Q^2)
 \]
 - For arbitrary J: $-J \leq H \leq J$ [2J + 1 structure functions]
 \[
 W^H_{\mu\nu} = \left(g_{\mu\nu} \frac{p \cdot q}{q^2} + \frac{p_\mu p_\nu}{p \cdot q} \right) F_2^H(x_A, Q^2) + \frac{i \varepsilon_{\mu\nu\lambda\sigma} q^\lambda p^\sigma}{p \cdot q} g_1^H(x_A, Q^2)
 \]

- Parton model expressions [2J + 1 quark distributions]
 \[
 F_2^H(x_A) = \sum_q e_q^2 x_A \left[q_A^H(x_A) + \bar{q}_A^H(x_A) \right]; \quad \text{parity} \implies F_2^H = F_2^{-H}
 \]
 \[
 F_2(x) = \frac{1}{2J + 1} \sum_{H=-J}^{J} F_2^H(x)
 \]
Definition of finite nuclei quark distributions

\[
q_A^H(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \langle A, P, H | \bar{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | A, P, H \rangle
\]

Approximate using a modified convolution formalism

\[
q_A^H(x_A) = \sum_{\alpha, \kappa, m} \int dy_A \int dx \, \delta(x_A - y_A x) f_{\alpha, \kappa, m}^{(H)}(y_A) q_{\alpha, \kappa}(x)
\]
Definition of finite nuclei quark distributions

\[
q^H_A(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+x_A \xi^-/A} \langle A, P, H | \bar{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | A, P, H \rangle
\]

Approximate using a modified convolution formalism

\[
q^H_A(x_A) = \sum_{\alpha, \kappa, m} \int dy_A \int dx \, \delta(x_A - y_A x) \, f^{(H)}_{\alpha, \kappa, m}(y_A) \, q_{\alpha, \kappa}(x)
\]

Convolution formalism diagrammatically:
Assume all spin is carried by the valence nucleons.

If \(A \gtrsim 8 \) and for example if:

\[
\begin{align*}
J &= \frac{3}{2} \\
\Rightarrow \quad F_{2A}^{3/2} &\approx F_{2A}^{1/2}
\end{align*}
\]

This is a model independent result within the convolution formalism.

Introduce multipole quark distributions:

\[
q^{(K)}(x) \equiv \sum_{J} (-1)^{J-H} \sqrt{2K+1} \left(\frac{J}{H} - \frac{J}{H} \frac{K}{0} \right) q^{H}(x), \quad K = 0, 2, \ldots, 2J
\]

Example:

\[
J = \frac{3}{2} \quad \Rightarrow \quad q^{(0)} = q^{\frac{3}{2}} + q^{\frac{1}{2}} \quad q^{(2)} = q^{\frac{3}{2}} - q^{\frac{1}{2}}
\]

Higher multipoles encapsulate difference between helicity distributions.
Some multipole quark distributions result

- Large $K > 1$ multipole PDFs would be very surprising
- \rightarrow large off-shell effects &/or non-nucleon components, etc
New Sum Rules

- Sum rules for multipole quark distributions

\[\int dx \, x^{n-1} \, q^{(K)}(x) = 0, \quad K, n \text{ even}, \quad 2 \leq n < K, \]
\[\int dx \, x^{n-1} \, \Delta q^{(K)}(x) = 0, \quad K, n \text{ odd}, \quad 1 \leq n < K. \]

- Examples:

\[J = \frac{3}{2} \implies \langle \Delta q^{(3)}(x) \rangle = 0 \]
\[J = 2 \implies \langle \Delta q^{(3)}(x) \rangle = \langle q^{(4)}(x) \rangle = 0 \]
\[J = \frac{5}{2} \implies \langle \Delta q^{(3)}(x) \rangle = \langle q^{(4)}(x) \rangle = \langle \Delta q^{(5)}(x) \rangle = \langle x^2 \Delta q^{(5)}(x) \rangle = 0 \]

- Sum rules place tight constraints on multipole PDFs

Nambu–Jona-Lasinio Model

- Interpreted as low energy chiral effective theory of QCD

 \[\frac{Z(k^2)}{k^2} \]

- Can be motivated by infrared enhancement of quark–gluon interaction
e.g. DSEs and Lattice QCD

- Investigate the role of quark degrees of freedom

- NJL has same symmetries as QCD

- Lagrangian:
 \[\mathcal{L}_{NJL} = \overline{\psi} \left(i\gamma^\mu \partial_\mu - m \right) \psi + G \left(\overline{\psi} \Gamma \psi \right)^2 \]
Nucleon in the NJL model

- Nucleon approximated as quark-diquark bound state
- Use relativistic Faddeev approach:

\[
P - k = P - k
\]

- Nucleon quark distributions

\[
q(x) = p^+ \int \frac{d\xi^-}{2\pi} e^{ix \cdot p^+ \xi^-} \langle p, s | \bar{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | p, s \rangle_c, \quad \Delta q(x) = \langle \gamma^+ \gamma_5 \rangle
\]

- Associated with a Feynman diagram calculation

\[
\mathbf{[q(x), \Delta q(x), \Delta_T q(x)]} \rightarrow \mathbf{X} = \delta \left(x - \frac{k^+}{p^+}\right) \left[\gamma^+, \gamma^+ \gamma_5, \gamma^+ \gamma_1 \gamma_5\right]
\]
Results: proton quark distributions

- Covariant, correct support, satisfies baryon and momentum sum rules

\[\int dx \left[q(x) - \bar{q}(x) \right] = N_q, \quad \int dx \, x \left[u(x) + d(x) + \ldots \right] = 1 \]

- Satisfies positivity constraints and Soffer bound

\[|\Delta q(x)|, \quad |\Delta_T q(x)| \leq q(x), \quad q(x) + \Delta q(x) \geq 2|\Delta_T q(x)| \]

Asymmetric Nuclear Matter

- Finite density Lagrangian: add $\bar{q}q$ interaction in σ, ω, ρ channels

\[L = \bar{\psi}_q \left(i \not\! \partial - M^* - V_q \right) \psi_q + L'_I \]

- Fundamental physics: mean fields couple to the quarks in nucleons

- Finite density quark propagator

\[S(k)^{-1} = \not{k} - M - i\varepsilon \quad \rightarrow \quad S_q(k)^{-1} = \not{k} - M^* - V_q - i\varepsilon \]

- Hadronization + mean-field \Rightarrow effective potential that provides

\[V_{u(d)} = \omega_0 \pm \rho_0, \quad \omega_0 = 6 G_\omega (\rho_p + \rho_n), \quad \rho_0 = 2 G_\rho (\rho_p - \rho_n) \]

- $G_\omega \Leftrightarrow Z = N$ saturation & $G_\rho \Leftrightarrow$ symmetry energy
Isovector EMC effect

- **EMC ratio:**
 \[
 R = \frac{F_{2A}}{F_{2A,\text{naive}}} = \frac{F_{2A}}{Z F_{2p} + N F_{2n}} \approx \frac{4 u_A(x) + d_A(x)}{4 u_f(x) + d_f(x)}
 \]

- Density is fixed only changing Z/N ratio
- EMC effect essentially a consequence of binding at the quark level
- **proton excess:** u-quarks feel more repulsion than d-quarks ($V_u > V_d$)
- **neutron excess:** d-quarks feel more repulsion than u-quarks ($V_d > V_u$)
Weak mixing angle and the NuTeV anomaly

- **NuTeV**: \(\sin^2 \theta_W = 0.2277 \pm 0.0013^{(\text{stat})} \pm 0.0009^{(\text{syst})} \)

- World average \(\sin^2 \theta_W = 0.2227 \pm 0.0004 : 3 \sigma \rightarrow \) “NuTeV anomaly”

- Huge amount of experimental & theoretical interest [over 400 citations]

- No universally accepted complete explanation
Paschos-Wolfenstein ratio

- Paschos-Wolfenstein ratio motivated the NuTeV study:

\[R_{PW} = \frac{\sigma_{NC}^{\nu A} - \sigma_{NC}^{\bar{\nu} A}}{\sigma_{CC}^{\nu A} - \sigma_{CC}^{\bar{\nu} A}}, \quad NC \Rightarrow Z^0, \quad CC \Rightarrow W^\pm \]

- For an isoscalar target \(u_A \simeq d_A \) and if \(s_A \ll u_A + d_A \)

\[R_{PW} = \left(\frac{1}{2} - \sin^2 \theta_W \right) + \left(1 - \frac{7}{3} \sin^2 \theta_W \right) \frac{\langle x u_A^- - x d_A^- \rangle}{\langle x u_A^- + x d_A^- \rangle} \]

- NuTeV “measured” \(R_{PW} \) on an Fe target (\(Z/N \simeq 26/30 \))
- Correct for neutron excess ⇔ flavour dependent EMC effect
- Use our medium modified “Fe” quark distributions

\[\Delta R_{PW} = \Delta R_{PW}^{\text{naive}} + \Delta R_{PW}^{\text{Fermi}} + \Delta R_{PW}^{\rho^0} \]

\[= - (0.0107 + 0.0004 + 0.0028). \]

- Isoscalarity \(\rho^0 \) correction can explain up to 65% of anomaly
NuTeV anomaly cont’d

- Also correction from $m_u \neq m_d$ - Charge Symmetry Violation
 - CSV + ρ_0 \implies no NuTeV anomaly
 - No evidence for physics beyond the Standard Model

- Instead “NuTeV anomaly” is evidence for medium modification
 - Equally interesting
 - EMC effect has over 850 citations

- Model dependence?
 - sign of correction is fixed by nature of vector fields
 \[
 q(x) = \frac{p^+}{p^+-V^+} q_0 \left(\frac{p^+}{p^+-V^+} x - \frac{V^+_q}{p^+-V^+} \right), \quad N > Z \implies V_d > V_u
 \]
 - ρ^0-field shifts momentum from u- to d-quarks
 - size of correction is constrained by Nucl. Matt. symmetry energy

- ρ_0 vector field reduces NuTeV anomaly – Model Independent!!
Includes NuTeV functionals

Small increase in systematic error

NuTeV anomaly interpreted as evidence for medium modification

Equally profound as evidence for physics beyond Standard Model
Consistent with other observables?

- We claim isovector EMC effect explains $\sim 1.5\sigma$ of NuTeV result
 - is this mechanism observed elsewhere?
- Yes!! Parity violating DIS: γZ^0 interference

\[
A_{PV} = \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L} \propto \left[a_2(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right]
\]

\[
a_2(x) = -2g_A^e \frac{F_2^{\gamma Z}}{F_2^\gamma} = \frac{6u^+ + 3d^+}{4u^+ + d^+} - 4\sin^2\theta_W
\]

\[
a_3(x) = -2g_V^e \frac{F_3^{\gamma Z}}{F_2^\gamma} = 3 \left(1 - 4\sin^2\theta_W\right) \frac{2u^- + d^-}{4u^+ + d^+}
\]

- Parton model expressions

\[
F_2^{\gamma Z} = 2 \sum e_q g_V^q x \left(q + \bar{q}\right), \quad g_V^q = \pm \frac{1}{2} - 2e_q \sin^2\theta_W
\]

\[
F_3^{\gamma Z} = 2 \sum e_q g_A^q \left(q - \bar{q}\right), \quad g_A^q = \pm \frac{1}{2}
\]
Parity Violating DIS: Carbon

- Ignoring quark mass differences, s-quarks and EW corrections

- For a $N = Z$ target:

\[a_2(x) = \frac{6u_A^+ + 3d_A^+}{4u_A^+ + d_A^+} - 4\sin^2\theta_W \rightarrow \frac{9}{5} - 4\sin^2\theta_W \]

\[a_3(x) = 3\left(1 - 4\sin^2\theta_W\right) \frac{2u^- + d^-}{4u_A^+ + d_A^+} \rightarrow \frac{9}{5}\left(1 - 4\sin^2\theta_W\right) \frac{u_A^- + d_A^-}{u_A^+ + d_A^+} \]

- Measurement of $a_2(x)$ at each x \(\rightarrow\) a NuTeV experiment!
Parity Violating DIS: Carbon

![Graphs showing the behavior of $a_2(x)$ and $a_3(x)$ for $Z/N = 1$ (Carbon) with $Q^2 = 5 \text{ GeV}^2$ and $\sin^2 \theta_W$](image)

- Ignoring quark mass differences, s-quarks and EW corrections
 - For a $N = Z$ target:

 $$a_2(x) = \frac{6 u_A^+ + 3 d_A^+}{4 u_A^+ + d_A^+} - 4 \sin^2 \theta_W \rightarrow \frac{9}{5} - 4 \sin^2 \theta_W$$

 $$a_3(x) \rightarrow \frac{9}{5} \left(1 - 4 \sin^2 \theta_W\right) \frac{u_A^- + d_A^-}{u_A^+ + d_A^+} = \frac{9}{5} \left(1 - 4 \sin^2 \theta_W\right) \left[1 + 2 \frac{\bar{u}_A + \bar{d}_A}{u_A^- + d_A^-}\right]^{-1}$$

- Measurement of $a_2(x)$ at each $x \implies$ a NuTeV experiment!
Parity Violating DIS: Iron

For a $N \sim Z$ target:

\[
a_2(x) = \frac{9}{5} - 4 \sin^2 \theta_W - \frac{12}{25} \frac{u_A^+(x) - d_A^+(x)}{u_A^+(x) + d_A^+(x)}
\]

\[
a_3(x) = \frac{9}{5} (1 - 4 \sin^2 \theta_W) \left\{ \frac{u_A^- + d_A^-}{u_A^+ + d_A^+} - \frac{1}{3} \left[\frac{12}{5} \frac{u_A^- + d_A^-}{u_A^+ + d_A^+} \frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} - \frac{u_A^- - d_A^-}{u_A^+ + d_A^+} \right] \right\}
\]

“Naive” result has no medium corrections

Sizeable medium effects in $a_2(x)$
For a $N \simeq Z$ target:

$$a_2(x) = \frac{9}{5} - 4 \sin^2 \theta_W - \frac{12}{25} \frac{u_A^+(x) - d_A^+(x)}{u_A^+(x) + d_A^+(x)}$$

$$a_3(x) = \frac{9}{5} \left(1 - 4 \sin^2 \theta_W\right) \left\{ \frac{u_A^- + d_A^-}{u_A^+ + d_A^+} - \frac{1}{3} \left[\frac{12}{5} \frac{u_A^- + d_A^-}{u_A^+ + d_A^+} \frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} - \frac{u_A^- - d_A^-}{u_A^+ + d_A^+} \right] \right\}$$

After naive isoscalarity corrections medium effects still very large

Large x dependence of $a_2(x) \rightarrow$ evidence for medium modification
Flavour Dependence of EMC effect

- Flavour dependence determined by measuring F_{2A}^{γ} and $F_{2A}^{\gamma Z}$

- $N > Z \implies d$-quarks feel more repulsion than u-quarks: $V_d > V_u$

$$q(x) = \frac{p^+}{p_{+ +} - V^+} q_0 \left(\frac{p^+}{p_{+ +} - V^+} x - \frac{V^+_{q^+}}{p_{+ +} - V^+} \right)$$

- ρ^0 field has shifted momentum from u to d quarks
- u quarks are more bound than d quarks

- If observed \implies very strong evidence for medium modification
Finite nuclei EMC effects

- **EMC ratio**
 \[R = \frac{F_{2A}}{F_{2A}^{\text{naive}}} = \frac{F_{2A}}{Z F_{2p} + N F_{2n}} \]

- **Polarized EMC ratio**
 \[R_s^H = \frac{g_{1A}^H}{g_{1A}^{H,\text{naive}}} = \frac{g_{1A}^H}{P_p^H g_{1p} + P_n^H g_{1n}} \]

- **Spin-dependent cross-section is suppressed by 1/A**
 - Must choose nuclei with \(A \lesssim 27 \)
 - Protons should carry most of the spin e.g. \(\rightarrow \) \(^7\text{Li}, \(^{11}\text{B}, \ldots \)

- **Ideal nucleus is probably \(^7\text{Li} \)**
 - From Quantum Monte–Carlo: \(P_p^J = 0.86 \) & \(P_n^J = 0.04 \)

- **Ratios equal 1 in non-relativistic and no-medium modification limit**
EMC ratio 7Li, 11B and 27Al

- **7Li**
 - $Q^2 = 5 \text{ GeV}^2$
 - Experiment: 9Be
 - Unpolarized EMC effect
 - Polarized EMC effect

- **11B**
 - $Q^2 = 5 \text{ GeV}^2$
 - Experiment: 12C
 - Unpolarized EMC effect
 - Polarized EMC effect

- **27Al**
 - $Q^2 = 5 \text{ GeV}^2$
 - Experiment: 27Al
 - Unpolarized EMC effect
 - Polarized EMC effect
Is there medium modification

![Graph showing EMC Ratios for 27Al](image)

- **Experiment:** 27Al
- Unpolarized EMC effect
- Polarized EMC effect
- $Q^2 = 5 \text{ GeV}^2$
Is there medium modification

- Medium modification of nucleon has been switched off
- Relativistic effects remain
- Large splitting would be strong evidence for medium modification
Nuclear Spin Sum

<table>
<thead>
<tr>
<th>Proton spin states</th>
<th>Δu</th>
<th>Δd</th>
<th>Σ</th>
<th>g_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.97</td>
<td>-0.30</td>
<td>0.67</td>
<td>1.267</td>
</tr>
<tr>
<td>^7Li</td>
<td>0.91</td>
<td>-0.29</td>
<td>0.62</td>
<td>1.19</td>
</tr>
<tr>
<td>^{11}B</td>
<td>0.88</td>
<td>-0.28</td>
<td>0.60</td>
<td>1.16</td>
</tr>
<tr>
<td>^{15}N</td>
<td>0.87</td>
<td>-0.28</td>
<td>0.59</td>
<td>1.15</td>
</tr>
<tr>
<td>^{27}Al</td>
<td>0.87</td>
<td>-0.28</td>
<td>0.59</td>
<td>1.15</td>
</tr>
<tr>
<td>Nuclear Matter</td>
<td>0.79</td>
<td>-0.26</td>
<td>0.53</td>
<td>1.05</td>
</tr>
</tbody>
</table>

- **Angular momentum of nucleon:** \(J = \frac{1}{2} \Delta \Sigma + L_q + J_g \)
 - in medium \(M^* < M \) and therefore quarks are more relativistic
 - lower components of quark wavefunctions are enhanced
 - quark lower components usually have larger angular momentum
 - \(\Delta q(x) \) very sensitive to lower components

- **Conclusion:** quark spin \rightarrow orbital angular momentum in-medium
Conclusion

* Illustrated the inclusion of quarks into a traditional description of nuclei
 - complementary approach to traditional nuclear physics

* Major discrepancy with SM predictions for Z^0 is NuTeV anomaly
 - may be resolved by CSV and isovector EMC effect corrections

* EMC effect and NuTeV anomaly are interpreted as evidence for medium modification of the bound nucleon wavefunction
 - result can be tested using PV DIS

* Some important remaining challenges:
 - polarized EMC effect
 [quark spin converted $\rightarrow L_q$ in nuclei]
 - flavour dependence of EMC effect

* Exciting new experiments:
 - PV DIS, pion induced Drell-Yan, neutron knockout

* Slowly building a QCD based understanding of nuclear structure
Model Parameters

- **Free Parameters:**
 \[\Lambda_{IR}, \Lambda_{UV}, M_0, G_\pi, G_s, G_a, G_\omega \text{ and } G_\rho \]

- **Constraints:**
 - \(f_\pi = 93 \text{ MeV}, \ m_\pi = 140 \text{ MeV} \ \& \ \ M_N = 940 \text{ MeV} \)
 - \(\int_0^1 dx \ (\Delta u_v(x) - \Delta d_v(x)) = g_A = 1.267 \)
 - \((\rho, E_B/A) = (0.16 \text{ fm}^{-3}, -15.7 \text{ MeV}) \)
 - \(a_4 = 32 \text{ MeV} \)
 - \(\Lambda_{IR} = 240 \text{ MeV} \)

- We obtain [MeV]:
 - \(\Lambda_{UV} = 644 \)
 - \(M_0 = 400, \ M_s = 690, \ M_a = 990, \ldots \)

- Can now study a very large array of observables:
 - e.g. **meson and baryon**: quark distributions, form factors, GPDs, finite temp. and density, neutron stars
Regularization

- **Proper-time regularization**

\[
\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \tau^{n-1} e^{-\tau X} \rightarrow \frac{1}{(n-1)!} \int_{1/(\Lambda_{IR})^2}^{1/(\Lambda_{UV})^2} d\tau \tau^{n-1} e^{-\tau X}
\]

- \(\Lambda_{IR}\) eliminates unphysical thresholds for the nucleon to decay into quarks: \(\rightarrow\) simulates confinement

- E.g.: Quark wave function renormalization
 - \[Z(k^2) = e^{-\Lambda_{UV}(k^2-M^2)} - e^{-\Lambda_{IR}(k^2-M^2)}\]
 - \(\rightarrow\) \(Z(k^2 = M^2) = 0 \implies \) no free quarks

- Needed for: **nuclear matter saturation, \(\Delta\) baryon, etc**
Gap Equation & Mass Generation

\[-1 = -1 + \frac{1}{p - m + i\varepsilon} \Rightarrow \frac{1}{p - M + i\varepsilon} \]

- **Quark Propagator:**

- **Mass is generated via interaction with vacuum**

- **Dynamically generated quark masses** \(\iff \langle \bar{\psi}\psi \rangle \neq 0 \iff D\chi_{SB} \)
- **Proper-time regularization:** \(\Lambda_{IR} \) and \(\Lambda_{UV} \)

\[\Rightarrow \text{No free quarks} \Rightarrow \text{Confinement} \quad [Z(k^2 = M^2) = 0] \]
Off-Shell Effects

- For an off-shell nucleon, photon–nucleon vertex given by

\[\Gamma_{N}^{\mu}(p', p) = \sum_{\alpha, \beta = +, -} \Lambda^{\alpha}(p') \left[\gamma^{\mu} f_{1}^{\alpha\beta} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} f_{2}^{\alpha\beta} + q^{\mu} f_{3}^{\alpha\beta} \right] \Lambda^{\alpha}(p) \]

- In-medium nucleon is off-shell, extremely difficult to quantify effects
 - However must understand to fully describe in-medium nucleon

- Simpler system: off-shell pion form factors
 - relax on-shell constraint \(p'^{2} = p^{2} = m_{\pi}^{2} \)
 - Very difficult to calculate in many approaches, e.g. Lattice QCD

\[(p' + p)^{\mu} F_{\pi,1}(p'^{2}, p^{2}, Q^{2}) + (p' - p)^{\mu} F_{\pi,2}(p'^{2}, p^{2}, Q^{2}) \]

- For \(p'^{2} = p^{2} = m_{\pi}^{2} \) we have \(F_{\pi,1} \rightarrow F_{\pi} \) and \(F_{\pi,2} = 0 \)
Results: Nuclear Matter

- $\rho_p + \rho_n = \text{fixed}$ – Differences arise from:
 - naive: different number protons and neutrons
 - medium: p & n Fermi motion and $V_{u(d)}$ differ $\rightarrow u_p(x) \neq d_n(x), \ldots$