Interpretation of MINOS data in terms of non-standard neutrino interactions

Pedro Machado

Universidade de São Paulo, Fermilab
work done in collaboration with Joachim Kopp and Stephen Parke

August 2010
1 Introduction

2 Framework
- General considerations
- 2 generations models

3 Simulation
- Neutral current NSI
- Charged current NSI
- Future experiments

4 Discussion
Outline

1 Introduction

2 Framework
 - General considerations
 - 2 generations models

3 Simulation
 - Neutral current NSI
 - Charged current NSI
 - Future experiments

4 Discussion
Recently, MINOS has reported a tension between ν_μ and $\bar{\nu}_\mu$ disappearance.

Taken from Vahle@Neutrino 2010
What could that be?
What could that be?

- Statistical fluctuation?

Taken from Vahle@Neutrino 2010
What could that be?

- Statistical fluctuation? Not very interesting... (∼ 6%)
What could that be?

- Statistical fluctuation? Not very interesting... (~ 6%)
- CPT violation?
 Barenboim Lykken 0908.2993
- Sterile $\nu +$ new gauge boson? Engelhardt Nelson Walsh 1002.4452
- Non-standard interaction?
What could that be?
Statistical fluctuation? Not very interesting... (≈ 6%)
CPT violation?
Barenboim Lykken 0908.2993
Sterile ν + new gauge boson? Engelhardt Nelson Walsh 1002.4452
Non-standard interaction?←This presentation
Outline

1 Introduction

2 Framework
 - General considerations
 - 2 generations models

3 Simulation
 - Neutral current NSI
 - Charged current NSI
 - Future experiments

4 Discussion
We are interested in ν_μ and $\overline{\nu}_\mu$ disappearance channels at atmospheric baseline ($\nu_\mu - \nu_\tau$ subsystem).

Since $(\nu_\mu \rightarrow \nu_\mu) \overset{CPT}{\longleftrightarrow} (\overline{\nu}_\mu \rightarrow \overline{\nu}_\mu)$, a CP phase alone can’t explain the signal, because it enters the probability formula as an even factor.

Using effective four-fermion operators to describe NSI, we can have a scalar, pseudo-scalar, vector, axial or tensor interaction.

Then, what should be explored?
We are interested in ν_μ and $\bar{\nu}_\mu$ disappearance channels at atmospheric baseline ($\nu_\mu - \nu_\tau$ subsystem).

Since $(\nu_\mu \rightarrow \nu_\mu) \overset{CPT}{\longleftrightarrow} (\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu)$, a CP phase alone can’t explain the signal, because it enters the probability formula as an even factor.

Using effective four-fermion operators to describe NSI, we can have a scalar, pseudo-scalar, vector, axial or tensor interaction.

Then, what should be explored?

Neutral current NSI: let’s consider a $V - A$ effective interaction in propagation only. This will contribute to the MSW potential.
We are interested in ν_μ and $\bar{\nu}_\mu$ disappearance channels at atmospheric baseline ($\nu_\mu - \nu_\tau$ subsystem).

Since $(\nu_\mu \rightarrow \nu_\mu) \xleftrightarrow{CPT} (\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu)$, a CP phase alone can't explain the signal, because it enters the probability formula as an even factor.

Using effective four-fermion operators to describe NSI, we can have a scalar, pseudo-scalar, vector, axial or tensor interaction.

Then, what should be explored?

Neutral current NSI: let's consider a $V - A$ effective interaction in propagation only. This will contribute to the MSW potential.

Charged current NSI: an axial operator would lead to the $\pi \rightarrow \mu \nu_\tau$ decay \Rightarrow constrained by NOMAD, so we will consider only a vector effective operator (detection only).
Our neutral current NSI arises from an effective operator like

$$\frac{G_F}{\sqrt{2}} \varepsilon_{\alpha\beta} \left[\bar{\nu}_\alpha \gamma^\rho \left(1 - \gamma^5 \right) \nu_\beta \right] \left[\bar{f} \gamma_\rho \left(1 - \gamma^5 \right) f \right], \quad \alpha, \beta = \mu, \tau.$$

From that the Hamiltonian can be derived as

$$H = \frac{1}{2E} \left[U \begin{pmatrix} 0 & \Delta m^2 \end{pmatrix} U^\dagger + A \begin{pmatrix} \varepsilon_{\mu\mu}^m & \varepsilon_{\mu\tau}^m \\ \varepsilon_{\mu\tau}^{m*} & \varepsilon_{\tau\tau}^m \end{pmatrix} \right],$$

$$A = 2\sqrt{2} G_F N_e E$$
Leading to the following survival probability

\[
P(\nu_\mu \rightarrow \nu_\mu) = 1 - \frac{\left| \Delta m^2 \sin 2\theta + 2\epsilon^{m}_{\mu\tau} A \right|^2}{\Delta m_N^4} \sin^2 \left(\frac{\Delta m_N^2 L}{4E} \right),
\]

\[
\Delta m_N^2 = \sqrt{(\Delta m^2 \cos 2\theta + \epsilon^{m}_{\tau\tau} A)^2 + \left| \Delta m^2 \sin 2\theta + 2\epsilon^{m}_{\mu\tau} A \right|^2}.
\]

For anti-neutrinos \(\epsilon^{m}_{\mu\tau} \rightarrow \epsilon^{m*}_{\mu\tau} \) and \(A \rightarrow -A \), so that \(P(\nu_\mu \rightarrow \nu_\mu) \neq P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu) \) without CPT violation.

- Leading to the following survival probability

\[
P(\nu_\mu \rightarrow \nu_\mu) = 1 - \frac{|\Delta m^2 \sin 2\theta + 2\varepsilon^m_{\mu\tau} A|^2}{\Delta m^4_N} \sin^2 \left(\frac{\Delta m^2_N L}{4E}\right),
\]

\[
\Delta m^2_N = \sqrt{(\Delta m^2 \cos 2\theta + \varepsilon^m_{\tau\tau} A)^2 + |\Delta m^2 \sin 2\theta + 2\varepsilon^m_{\mu\tau} A|^2}.
\]

- For anti-neutrinos \(\varepsilon^m_{\mu\tau} \rightarrow \varepsilon^m_{\mu\tau}^*\) and \(A \rightarrow -A\), so that \(P(\nu_\mu \rightarrow \nu_\mu) \neq P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu)\) without CPT violation.

- Symmetries lead to eightfold degeneracy:

\[
\arg (\varepsilon^m_{\mu\tau}) \rightarrow 2\pi - \arg (\varepsilon^m_{\mu\tau}) \quad \varepsilon^m_{\tau\tau} \rightarrow -\varepsilon^m_{\tau\tau}, \quad \theta \rightarrow \frac{\pi}{2} - \theta
\]

\[
\varepsilon^m_{\mu\tau} \rightarrow -\varepsilon^m_{\mu\tau}, \quad \varepsilon^m_{\tau\tau} \rightarrow -\varepsilon^m_{\tau\tau}, \quad \Delta m^2 \rightarrow -\Delta m^2
\]
Our charged current NSI arises from an effective operator like

\[\frac{G_F}{\sqrt{2}} \varepsilon_d^{\alpha \beta} \left[\bar{\nu}_\alpha \gamma^\rho l_\beta \right] \left[\bar{f}' \gamma^\rho f \right] . \]

If \(\varepsilon^{d}_{\tau \mu} \) is non-zero, the following amplitudes will interfere and contribute to MINOS counting rate

\[\nu_\mu + N \rightarrow X + \mu, \]

\[\nu_\mu \rightarrow \nu_\tau \Rightarrow \nu_\tau + N \rightarrow X + \mu. \]
The apparent ν_μ survival probability \tilde{P} can be calculated to
\[
(\phi^d_{\tau\mu} \equiv \text{arg} \varepsilon^d_{\tau\mu})
\]
\[
\tilde{P} = 1 - \left[1 + 2 |\varepsilon^d_{\tau\mu}| \cot 2\theta \cos \phi^d_{\tau\mu} - |\varepsilon^d_{\tau\mu}|^2 \right] s^2 \theta \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)
+ 2 |\varepsilon^d_{\tau\mu}| s^2 \theta \sin \phi^d_{\tau\mu} \sin \left(\frac{\Delta m^2 L}{4E} \right) \cos \left(\frac{\Delta m^2 L}{4E} \right).
\]

For anti-neutrino $\phi^d_{\tau\mu} \rightarrow -\phi^d_{\tau\mu}$, hence
\[
\tilde{P} (\nu_\mu \rightarrow \nu_\mu) \neq \tilde{P} (\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu).
\]
The apparent \(\nu_\mu \) survival probability \(\tilde{P} \) can be calculated to

\[
\tilde{P} = 1 - \left[1 + 2 |\epsilon_{\tau \mu}^d| \cot 2\theta \cos \phi_{\tau \mu}^d - |\epsilon_{\tau \mu}^d|^2 \right] s_{2\theta}^2 \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)
\]

\[
+ 2 |\epsilon_{\tau \mu}^d| s_{2\theta} \sin \phi_{\tau \mu}^d \sin \left(\frac{\Delta m^2 L}{4E} \right) \cos \left(\frac{\Delta m^2 L}{4E} \right).
\]

For anti-neutrino \(\phi_{\tau \mu}^d \rightarrow -\phi_{\tau \mu}^d \), hence

\[
\tilde{P} (\nu_\mu \rightarrow \nu_\mu) \neq \tilde{P} (\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu).
\]

Symmetries leads to a fourfold and a continuous degeneracy:

\[
\phi_{\tau \mu}^d \rightarrow 2\pi - \phi_{\tau \mu}^d, \Delta m^2 \rightarrow -\Delta m^2 \quad \phi_{\tau \mu}^d \rightarrow \pi - \phi_{\tau \mu}^d, \theta \rightarrow \frac{\pi}{2} - \theta
\]

2 equations, 3 unknowns \(\Rightarrow \) 1D degeneracy set.
Outline

1. Introduction

2. Framework
 - General considerations
 - 2 generations models

3. Simulation
 - Neutral current NSI
 - Charged current NSI
 - Future experiments

4. Discussion
Simulation details:

- 3 generations,
- Marginalization over all not shown parameters,
- Proper treatment of degeneracies,
- Energy window: 1 - 5 GeV for ν_μ and 1 - 8 GeV for $\bar{\nu}_\mu$,
- Energy resolution tuning in order to reproduce MINOS standard contours,
- GLoBES.

![Plot of Δm^2_{32} vs $\sin^2 2\theta_{23}$](image)

- ν_μ 90% C.L., 68% C.L.
- $\bar{\nu}_\mu$ 90% C.L., 68% C.L.
- $\nu_\mu,\bar{\nu}_\mu$ Best fit
- $\nu_\mu,\bar{\nu}_\mu$ MINOS Best fit
- MINOS 90%, 68% C.L.
Neutral current NSI

90% excl. limits from Biggio
Blennow Fernandez–Martinez, 0907.0097.

Atmospheric 2 flavour 90% excl. limit from
Gonzalez–Garcia Maltoni, 0704.1800.
Pedro Machado
Interpretation of MINOS data - NSI
What about the future?
The best strategy would be to run in anti-neutrino mode slightly more than in neutrino mode!
The discovery reach depends strongly on nature’s choice. Let’s hope that nature is kind to us!
The discovery reach depends strongly in nature’s choice. Let’s hope that nature is kind to us!
Outline

1 Introduction

2 Framework
 - General considerations
 - 2 generations models

3 Simulation
 - Neutral current NSI
 - Charged current NSI
 - Future experiments

4 Discussion
In order to explain the tension in MINOS using NSI, the NSI couplings would have to be quite big.

While the neutral current interactions only in propagation are most likely ruled out by atmospheric constraints...
In order to explain the tension in MINOS using NSI, the NSI couplings would have to be quite big.

While the neutral current interactions only in propagation are most likely ruled out by atmospheric constraints...

A charged current operator between $\nu_\tau - \mu$ is not excluded!
In order to explain the tension in MINOS using NSI, the NSI couplings would have to be quite big.

While the neutral current interactions only in propagation are most likely ruled out by atmospheric constraints...

A charged current operator between $\nu_\tau - \mu$ is not excluded!

Ultimately, the effective operators generating NSI should arise from an underlying renormalizable model. Model-dependent constraints are typically much stronger than the model-independent bounds considered.

If this tension persists, it could be explained by NSI, but that would require a rather non-trivial model...
In order to explain the tension in MINOS using NSI, the NSI couplings would have to be quite big.

While the neutral current interactions only in propagation are most likely ruled out by atmospheric constraints...

A charged current operator between $\nu_\tau - \mu$ is not excluded!

Ultimately, the effective operators generating NSI should arise from an underlying renormalizable model. Model-dependent constraints are typically much stronger than the model-independent bounds considered.

If this tension persists, it could be explained by NSI, but that would require a rather non-trivial model...

But our inability to construct a simple model featuring large NSI should *not* be regarded as a proof that they cannot exist!
In order to explain the tension in MINOS using NSI, the NSI couplings would have to be quite big.

While the neutral current interactions only in propagation are most likely ruled out by atmospheric constraints...

A charged current operator between $\nu_\tau - \mu$ is not excluded!

Ultimately, the effective operators generating NSI should arise from an underlying renormalizable model. Model-dependent constraints are typically much stronger than the model-independent bounds considered.

If this tension persists, it could be explained by NSI, but that would require a rather non-trivial model...

But our inability to construct a simple model featuring large NSI should *not* be regarded as a proof that they cannot exist!

Surprises, surprises, surprises! [S. Parke]
Backup
More simulation details:

- $\nu_\mu \rightarrow \nu_\mu$: $\sigma = 0.16E + 0.07\sqrt{E}$, 4% flux uncertainty

- $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$: $\sigma = 0.155E + 0.11\sqrt{E}$, 5% flux uncertainty

- Gaussian priors: $\sin^2 2\theta_{13} < 0.1$, $\theta_{12} = (34.4 \pm 1.4)\degree$, $\Delta m_{21}^2 = (7.59 \pm 0.30) \times 10^{-5}$ eV2.

- Std fit: $\chi^2_{MIN}/dof = 20.1/17 = 1.18$

- NC fit: $\chi^2_{MIN}/dof = 12.6/14 = 0.9$

- CC fit: $\chi^2_{MIN}/dof = 15.9/15 = 1.06$
Pedro Machado
Interpretation of MINOS data - NSI
Best fit points:

- **Standard:**
 - \(\sin^2 2\theta_{23} = 1 \)
 - \(\Delta m_{32}^2 = 2.42 \times 10^{-3} \text{ eV}^2 \)

- **NC NSI:**
 - \(\sin^2 2\theta_{23} = 0.94 \)
 - \(\Delta m_{32}^2 = 2.93 \times 10^{-3} \text{ eV}^2 \)
 - \(\varepsilon^m_{\mu\tau} = 0.4 \ e^{1.00\pi} \)
 - \(\varepsilon^m_{\tau\tau} = 2.16 \)

- **CC NSI:**
 - \(\sin^2 2\theta_{23} = 0.88 \)
 - \(\Delta m_{32}^2 = 2.81 \times 10^{-3} \text{ eV}^2 \)
 - \(\varepsilon^d_{\tau\mu} = 0.22 \ e^{0.19\pi} \)