Matthew Luzum
(In collaboration with Jean-Yves Ollitrault and Clément Gombeaud)

arXiv:1004.2023

Institut de Physique Théorique
CEA/Saclay

June 11, 2010

Quantifying the Properties of Hot QCD Matter
1. **Introduction/Review**
 - Hydrodynamic simulations
 - Azimuthal correlations—v_2, v_4
 - Previous results

2. **Results from Hydrodynamics**
 - $v_4/(v_2)^2$ at RHIC energies
 - Ideal hydrodynamics / parameter dependence
 - Viscous hydrodynamics / dependence on δf
 - LHC prediction

3. **Conclusions**
OUTLINE

1 INTRODUCTION/REVIEW
 - Hydrodynamic simulations
 - Azimuthal correlations—\(\nu_2, \nu_4 \)
 - Previous results

2 RESULTS FROM HYDRODYNAMICS
 - \(\nu_4/(\nu_2)^2 \) at RHIC energies
 - Ideal hydrodynamics / parameter dependence
 - Viscous hydrodynamics / dependence on \(\delta f \)
 - LHC prediction

3 CONCLUSIONS
Can use (viscous) hydrodynamics to model evolution of a collision

Initial conditions and freeze out procedure are both important.
At freeze out the fluid is converted into particles

\[\frac{dN}{dY d^2p_t} \propto \int p_\mu d\Sigma^\mu f(p_\mu) \]

with a distribution function given by kinetic theory

\[f = f_0 + \delta f = e^{(-E/T)} \left[1 + \left(\frac{\chi(p)}{p^2} \right) p_i p_j \Pi^{ij} \right] \]

Momentum dependence of \(\delta f \) not universal—depends on particle dynamics (but difficult to calculate for a realistic hadron system at freezeout.)

The quadratic form used (until recently) by all viscous hydro groups may not be correct.
Our Hydro Model (thanks to P. and U. Romatschke for the code)

- Second order conformal viscous hydrodynamics with constant η/s in 2+1 D
 - no bulk viscosity
 - no chemical potential
- “Realistic” QCD equation of state (Laine and Schröder ’06)
 - no treatment of chemical non-equilibrium
- Glauber and Color Glass Condensate (fKLN) initial conditions
 - optical models (no fluctuations)
 - just two simple models that represent roughly the possible range of initial eccentricity
- Cooper-Frye freeze out prescription (with resonance feeddown—code by J. Sollfrank and P. Kolb)
 - including alternate choices for momentum dependence of δf
\[\frac{dN}{dY\, d^2p_t} = v_0 \left[1 + \sum_n 2v_n \cos(n\phi) \right] \]
To compare to experiment, compute azimuthal moments:

$$\frac{dN}{dY \, d^2 p_t} = v_0 \left[1 + \sum_n 2v_n \cos(n\phi) \right]$$

Elliptic flow: $v_2 \equiv \langle \cos(2\phi) \rangle$
$v_2, v_4, \text{ETC.}$

To compare to experiment, compute azimuthal moments:

$$\frac{dN}{dY \, d^2p_t} = v_0 \left[1 + \sum_n 2v_n \cos(n \phi) \right]$$

Elliptic flow: $v_2 \equiv \langle \cos(2 \phi) \rangle$

Hexadecapole flow: $v_4 \equiv \langle \cos(4 \phi) \rangle$
Large measured v_2 indicates small viscosity, but exact value depends on initial eccentricity.
Ideal Hydrodynamics Prediction: $v_4/(v_2)^2 = 1/2$

Perform a saddle point approximation:

$$\frac{dN}{dY d^2p_t} = \frac{d}{(2\pi)^3} \int p_\mu d\Sigma^\mu e\left(-\frac{p \cdot u}{T}\right)$$

For large p_t, saddle point is at the maximum u parallel to momentum:

$$u_{\text{max}}(\phi) = U(1 + 2V_2 \cos(2\phi) + 2V_4 \cos(4\phi) + \ldots)$$

$$\implies v_2(p_t) = \frac{V_2U}{T} (p_t - m_t v)$$

$$v_4(p_t) = \frac{1}{2} \left(\frac{V_2U}{T} \right)^2 (p_t - m_t v)^2 + \frac{V_4U}{T} (p_t - m_t v)$$

$$= \frac{1}{2} v_2(p_t)^2 + \frac{V_4}{V_2} v_2(p_t)$$

($v \equiv U/\sqrt{1+U^2}$)

Experimental results are larger than 1/2.

Most of the discrepancy can be understood from fluctuations.
INTRODUCTION/REVIEW

1. Hydrodynamic simulations
2. Azimuthal correlations—v_2, v_4
3. Previous results

RESULTS FROM HYDRODYNAMICS

1. $v_4/(v_2)^2$ at RHIC energies
 - Ideal hydrodynamics / parameter dependence
 - Viscous hydrodynamics / dependence on δf
2. LHC prediction

CONCLUSIONS
COMPARING TO PREVIOUS RESULTS: IDEAL HYDRO WITH $T_f = 100$ MeV

- Like previous calculations: Asymptotes to $\sim 1/2$ with corrections like $1/p_t$
- Some unexpected impact parameter dependence, but **not** due to initial eccentricity.
Sensitivity to T_f

- $v_4/(v_2)^2$ sensitive to T_f
- (For ideal hydro) best-fit T_f for other observables (140 MeV) also results in flat $v_4/(v_2)^2$
Identified Particles

- Identified particles have same $v_4/(v_2)^2$
Viscous results at realistic $T_f = 140$ MeV

- Viscosity lowers $v_4/(v_2)^2$
- Standard “quadratic ansatz” for δf destroys flat curve and increases dependence on b
- Using a different δf can fix some of this:
RESULTS FROM HYDRODYNAMICS $v_4/(v_2)^2$ AT RHIC ENERGIES

δf DEPENDENCE

Glauber

CGC

PHENIX $\eta/s = 0.0001$
Linear
$p^{1.5}$
Quadratic

PHENIX/1.37 $\eta/s = 0.0001$
Linear
$p^{1.5}$
Quadratic

PHENIX $\eta/s = 0.0001$
Linear
$p^{1.5}$
Quadratic

PHENIX/1.37 $\eta/s = 0.0001$
Linear
$p^{1.5}$
Quadratic
Quadratic ansatz for δf difficult to reconcile with data.

$\chi(p)$ most likely somewhere between linear and quadratic.

Could provide stronger constraint as hydro models improve, giving insight into hadron dynamics.
Similar to RHIC results at slightly lower freeze out temperature
Viscous corrections are smaller, making choice for $δf$ less relevant.
OUTLINE

1 INTRODUCTION/REVIEW
 - Hydrodynamic simulations
 - Azimuthal correlations—ν_2, ν_4
 - Previous results

2 RESULTS FROM HYDRODYNAMICS
 - $\nu_4/(\nu_2)^2$ at RHIC energies
 - Ideal hydrodynamics / parameter dependence
 - Viscous hydrodynamics / dependence on δf
 - LHC prediction

3 CONCLUSIONS
Summary/Conclusions

- Hydrodynamic simulations confirm expectation of \(\frac{v_4}{(v_2)^2} \sim 1/2 \)
- Sensitive to \(T_f \), with 140 MeV giving a flat dependence on \(p_t \) in ideal hydro (and for \(\delta f \) with weak \(p_t \) dependence)
- \(\frac{v_4}{(v_2)^2} \) is insensitive to initial eccentricity (unlike \(v_2 \))
- Viscosity tends to decrease \(\frac{v_4}{(v_2)^2} \) for a realistic \(T_f \)
- Viscosity increases impact parameter dependence for standard quadratic ansatz for \(\delta f \), but decreases it for weaker \(p_t \) dependence.
- \(\frac{v_4}{(v_2)^2} \) at LHC should be similar to RHIC
Like in transport calculations, viscosity increases $\nu_4/(\nu_2)^2$ (but only with a small T_f)