Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Pasi Huovinen
J. W. Goethe Universität, Frankfurt

Quantifying the properties of Hot QCD matter

June 11, 2010, Institute for Nuclear Theory

in collaboration with Peter Petreczky at BNL

arXiv:0912:2541
QCD equation of state

lattice QCD (Karsch & Laermann, hep-lat/0305025):

\[T_c = (173 \pm 15) \text{ MeV} \]
\[\varepsilon_c \sim 0.7 \text{ GeV/fm}^3 \]

- EoS from first principles
- until recently, seldom used in hydro calculations
EoS by hotQCD collaboration

Bazavov et al. arXiv:0903.4379 [hep-lat]

- evaluate interaction measure \((\varepsilon - 3P)/T^4\)
- obtain pressure via

\[
\frac{P}{T^4} - \frac{P_0}{T_0^4} = \int_{T_0}^{T} \frac{dP}{T^5} \varepsilon - 3P \frac{T}{T^5}
\]

- What is \(P(T_0)\)?
- What is \((\varepsilon(T_0) - 3P(T_0))/T_0^4\)?
- How good is lattice below \(T_c\)?
Equation of state below T_c

Bazavov et al arXiv:0903.4379

$(\varepsilon - 3p)/T^4$

asqtad: $N_\tau = 8$
- 6

p4: $N_\tau = 8$
- 6

• Lattice EoS ≠ Hadron Resonance Gas EoS
Hadron Resonance Gas model

- **EoS of interacting** hadron gas well approximated by **non-interacting** gas of hadrons and resonances

\[P(T) = \sum_i \int d^3p \, \frac{p^2}{3E} f(p, T) \]

- valid when
 - interactions mediated by resonances

- Prakash & Venugopalan, NPA546, 718 (1992): experimental phase shifts

→ HRG good approximation at low temperatures
→ lattice should reproduce HRG at \(T \leq 120 - 140 \) MeV

- **practical problem**: how to convert fluid to particles?
- energy conservation iff EoS is the same before and after freeze-out
Hadrons on lattice

• Hadron masses depend on lattice cutoff
 ⇒ i.e. on temperature:
 E.g. for pseudoscalar mesons

\[m_{ps}^2 = m_{ps0}^2 + \frac{1}{r_1^2} \frac{a_{ps}^i x + b_{ps}^i x^2}{(1 + c_{ps}^i x)^{\beta_i}} \]

\[x = \left(\frac{a}{r_1} \right)^2 \]

\[a = \frac{1}{N_T T} \]

+ 16 pseudoscalar mesons on lattice

• HRG with lattice mass spectrum?
Hadronic fluctuations

i.e. baryon number, strangeness and charge susceptibilities

\[\chi_2^x = \frac{1}{VT^3} \frac{\partial^2 \ln Z}{\partial (\mu_x/T)^2} = \frac{1}{T^2} \frac{\partial^2 P}{\partial \mu_x^2}, \]

where \(\mu_x = \mu_B, \mu_S \) or \(\mu_Q \)

- Lattice masses \(\rightarrow \) fluctuations in resonance gas and lattice similar
very little room for modifications in hadron gas

BUT, what is physical mass spectrum?

conservative estimate: free particle masses
Phenomenological EoS

- $T < T_{sw}$: HRG interaction measure (black)
- $T > T_{sw}$: Lattice interaction measure (red)

- ϵ and P overshoot Stefan-Boltzmann limit!

- Interaction measure too large, but where?
Interaction measure

Cheng et al (’08)

\[
\frac{(\varepsilon - 3p)}{T^4} \quad Tr_0
\]

\[T \text{ [MeV]}\]

Bazavov et al (’09)

\[
\frac{(\varepsilon - 3p)}{T^4} \quad Tr_0
\]

asqtad: \(N_\tau=8\)

p4: \(N_\tau=4\), 6, 8

\[T \text{ [MeV]}\]

- peak region sensitive to \(N_\tau\)
Procedure for EoS

- HRG below $T \approx 180 - 190$ MeV
- Parametrize lattice using:

$$\frac{\epsilon - 3P}{T^4} = \frac{d_2}{T^2} + \frac{d_4}{T^4} + \frac{c_1}{T^{n_1}} + \frac{c_2}{T^{n_2}}$$

- Require that:

$$\frac{\epsilon - 3P}{T^4} \bigg|_{T_0}, \quad \frac{d}{dT} \frac{\epsilon - 3P}{T^4} \bigg|_{T_0}, \quad \frac{d^2}{dT^2} \frac{\epsilon - 3P}{T^4} \bigg|_{T_0}$$

are continuous

$$\frac{s}{T^3} \bigg|_{T=800\text{MeV}} = (90\% - 95\%) \frac{s_{SB}}{T^4}$$

$\implies T_0, d_4, c_1, c_2$ fixed

- χ^2 fit to lattice above $T = 250$ MeV
For the 95% SSB limit we get

\(T_0 = 171.8 \text{ MeV}, \quad d_2 = 0.2654, \quad d_4 = 6.563 \times 10^{-3}, \quad c_1 = -4.370 \times 10^{-5}, \quad c_2 = 5.774 \times 10^{-6}, \quad n_1 = 8, \quad n_2 = 9 \)
Interaction measure II

- add estimated peak to the fit
Phenomenological EoS

- obtain pressure via

\[
\frac{P}{T^4} - \frac{P_0}{T_0^4} = \int_{T_0}^{T} dT' \frac{\epsilon - 3P}{T'^5}
\]
Speed of sound

- no softening below the HRG!
Effect on flow I

- ideal fluid, \(b = 7 \, \text{fm} \)
- keep everything fixed:
 - \(\tau_0 = 0.6 \, \text{fm/c}, \ T_{\text{dec}} = 125 \, \text{MeV} \)

\[
\frac{1}{2\pi p_T} \frac{dN}{dp_T} \quad \text{versus} \quad p_T \ (\text{GeV/c})
\]

\[
V_2 \ (\%) \quad \text{versus} \quad p_T \ (\text{GeV/c})
\]

\(\rightarrow \) harder EoS, flatter spectra
Effect on flow II

- ideal hydro, Au+Au at $\sqrt{s_{NN}} = 200$ GeV
- chemical equilibrium

\[\begin{align*}
\text{s95p: } T_{dec} &= 140 \text{ MeV} \\
\text{EoS Q: first order phase transition at } T_c &= 170 \text{ MeV, } T_{dec} = 125 \text{ MeV}
\end{align*} \]
Chemical non-equilibrium

- ideal fluid, $b = 7 \text{ fm}$
- keep everything fixed:
- $\tau_0 = 0.2 \text{ fm/c}$, $T_{chem} = 150 \text{ MeV}$, $T_{dec} = 120 \text{ MeV}$

\Rightarrow harder EoS, flatter spectra
Effect on flow III

- ideal hydro, \(Au+Au \) at \(\sqrt{s_{NN}} = 200 \ \text{GeV} \)
- \(T_{\text{chem}} = 150 \ \text{MeV} \)

Graph:

- **EoS Q:** \(T_{\text{dec}} = 120 \ \text{MeV}, \ s_{\text{ini}} \propto N_{\text{bin}}, \ \tau_0 = 0.2 \ \text{fm/c} \)
- **s95p, \ \tau_0 = 0.8:** \(T_{\text{dec}} = 120 \ \text{MeV}, \ s_{\text{ini}} \propto N_{\text{bin}}, \ \tau_0 = 0.8 \ \text{fm/c} \)
- **s95p, \ \tau_0 = 0.2:** \(T_{\text{dec}} = 120 \ \text{MeV}, \ s_{\text{ini}} \propto N_{\text{bin}} + N_{\text{part}}, \ \tau_0 = 0.2 \ \text{fm/c} \)
Conclusions

- below T_c lattice and HRG differ because of hadron mass spectrum

⇒ HRG good description below T_c

- some uncertainty in the parametrization of the EoS

⇒ but it doesn’t matter

- proton $v_2(p_T)$ may or may not be sensitive to EoS — details matter!

- EoS tables available at
 and
Budapest-Wuppertal EoS

Aoki et al. hep-lat/0510084

- \(P(T) \) from expectation values of
 - gauge action \(\langle S_g \rangle \)
 - chiral condensates \(\langle \bar{\Psi} \Psi \rangle \)

- temperature scale?
and its “interpretation”

M. Chojnacki \textit{et al.}, arXiv:0712.0947

- HRG speed of sound \textbf{below} \(T_c \)
- lattice speed of sound \textbf{above} \(T_c \) (parametrization by Wuppertal group)
- fix the scale by \(T_c = 167 \) MeV

\[s(T) = s(T_0) \exp \left[\int_{T_0}^{T} \frac{dT'}{T' c_s^2} \right] \]
Equations of State

- **FB-Bielefeld**: Frankfurt-BNL interpretation of hotQCD EoS, $s95p$
- **K-Wuppertal**: Krakow interpretation of Wuppertal EoS
Speed of sound

\[c_s^2 \] vs. \(T \) (MeV)

- FB-Bielefeld
- K-Wuppertal

\begin{itemize}
 \item no softening below the HRG!
\end{itemize}
Flow anisotropy

- Au+Au collision at RHIC, $\sqrt{s} = 200$ GeV, $b=7$ fm

\[\epsilon_p = \frac{\langle T_{xx} - T_{yy} \rangle}{\langle T_{xx} + T_{yy} \rangle} \]

\[
\begin{align*}
\tau (\text{fm}) & \quad 0 & 2 & 4 & 6 & 8 & 10 & 12 \\
\epsilon_p & \quad 0 & 0.02 & 0.04 & 0.06 & 0.08 & 0.1 & 0.12
\end{align*}
\]

FB-Bielefeld
K-Wuppertal
$v_2(p_T)$ at RHIC

- Au+Au collision at RHIC, $\sqrt{s} = 200$ GeV, $b=7$ fm

FB-Bielefeld: $T_c = 140$ MeV,
K-Wuppertal: $T_c = 145$ MeV
Other observables?

- HBT?

- not promising

- γ and $l^+ l^-$?

- what are the rates?
Conclusions

- below T_c lattice and HRG differ because of hadron mass spectrum

⇒ HRG good description below T_c

- some uncertainty in the parametrization of the EoS

⇒ but it doesn’t matter

- proton $v_2(p_T)$ may or may not be sensitive to EoS — details matter!

- EoS tables available at
 and