Thermal Photons and Dileptons

Axel Drees, Stony Brook University
Seattle, May 27, 2010

- Introduction
- Analysis
- Experimental Results
 - The p+p reference
 - Low mass dilepton enhancement in Au+Au
 - Direct virtual photons in Au+Au
- Comparison to Models
- HBD in 2010
- Summary

PHENIX publications:
Lepton-Pair Continuum Physics

Modifications due to QCD phase transition

Chiral symmetry restoration
continuum enhancement
modification of vector mesons

Sources “long” after collision:
- π^0, η, ω Dalitz decays
- (ρ), ω, ϕ, J/ψ, ψ^\prime decays

Early in collision (hard probes):
- Heavy flavor production
- Drell Yan, direct radiation

Baseline from p-p

Thermal (blackbody) radiation
- in dileptons and photons
- temperature evolution

Medium modifications of meson
- $\pi\pi \rightarrow \rho \rightarrow l^+l^-$
- chiral symmetry restoration

Medium effects on hard probes
- Heavy flavor energy loss

Large discovery potential at RHIC
Key Challenge for PHENIX: Pair Background

- No background rejection \rightarrow Signal/Background $\geq 1/100$ in Au-Au
- Unphysical correlated background
 - Track overlaps in detectors
 - Not reproducible by mixed events: removed from event sample (pair cut)

- Combinatorial background: e^+ and e^- from different uncorrelated source
 $$\pi^0 \rightarrow e^+(e^-)\gamma \quad \gamma \rightarrow e^+e^-$$
 - Need event mixing because of acceptance differences for e^+ and e^-
 - Use like sign pairs to check event mixing

- Correlated background: e^+ and e^- from same source but not “signal”
 - “Cross” pairs
 - “jet” pairs

Use Monte Carlo simulation and like sign data to estimate and subtract background

Subtractions dominate systematic uncertainties
But are well under control experimentally!

Axel Drees
Estimate of Expected Sources

- **Hadron decays:**
 - Fit π^0 and π^\pm data $p+p$ or $Au+Au$

 $E \frac{d^3 \sigma}{d^3 p} = \frac{A}{\left(\exp(-ap_T - bp_T^2) + p_T/p_0\right)^n}$

 - For other mesons η, ω, ρ, ϕ, J/ψ etc. replace $p_T \rightarrow m_T$ and fit normalization to existing data where available

 Hadron data follows “m_T scaling”

- **Heavy flavor production:**
 - $\sigma_c = N_{coll} \times 567\pm57\pm193\mu b$ from single electron measurement

 Predict cocktail of known pair sources
Dilepton Continuum in p+p Collisions

- Data and Cocktail of known sources represent pairs with \(e^+ \) and \(e^- \) PHENIX acceptance
- Data are efficiency corrected

Excellent agreement of data and hadron decay contributions with 30\% systematic uncertainties
Charm and Bottom Contribution

Subtract hadron decay contribution and fit difference:

\[\sigma_c = 544 \pm 39 \text{ (stat)} \pm 142 \text{ (sys)} \pm 200 \text{ (model)} \ \mu b \]

Simultaneous fit of charm and bottom:

\[\sigma_c = 518 \pm 47 \text{ (stat)} \pm 135 \text{ (sys)} \pm 190 \text{ (model)} \ \mu b \]

\[\sigma_b = 3.9 \pm 2.4 \text{ (stat)} +3/-2 \text{ (sys)} \ \mu b \]

Consistent with PHENIX single electron measurement

\[\sigma_c = 567 \pm 57 \pm 193 \ \mu b \]
Measuring direct photons via virtual photons:

- any process that radiates γ will also radiate γ^*
- for $m << p_T$, γ^* is “almost real”
- extrapolate $\gamma^* \rightarrow e^+e^-$ yield to $m = 0 \rightarrow$ direct γ yield
- $m > m_\pi$ removes 90% of hadron decay background
- S/B improves by factor 10: 10% direct $\gamma \rightarrow$ 100% direct γ^*

Small excess at for $m << p_T$ consistent with pQCD direct photons
Au+Au Dilepton Continuum

Excess $150 < m_{ee} < 750$ MeV:
4.7 ± 0.4(stat.) ± 1.5(syst.) ± 0.9(model)

hadron decay cocktail tuned to AuAu

Charm from PYTHIA filtered by acceptance
$\sigma_c = N_{\text{coll}} x 567 \pm 57 \pm 193 \mu b$

Charm “thermalized” filtered by acceptance
$\sigma_c = N_{\text{coll}} x 567 \pm 57 \pm 193 \mu b$

Intermediate-mass continuum: consistent with PYTHIA if charm is modified room for thermal radiation
More on Charm Region (1.2 < m < 2.8 GeV)

Differentially in mass shape is NOT what is expected from charm.

Spectrum is steeper

True for most centralities (except maybe most central)
True for all Cu+Cu centralities!
Enhancement in IMR for peripheral collisions?!

Must measure heavy flavor contribution directly!!
Au+Au Dilepton Continuum

Excess $150 < m_{ee} < 750$ MeV:
$4.7 \pm 0.4\text{(stat.)} \pm 1.5\text{(syst.)} \pm 0.9\text{(model)}$
Centrality Dependence of Low Mass Continuum

Excess region: 150 < m < 750 MeV

- Yield / \(\frac{N_{\text{part}}}{2} \) in two mass windows
- \(\pi^0 \) region: production scales approximately with \(N_{\text{part}} \)
- Excess region: expect contribution from hot matter
 - in-medium production from \(\pi\pi \) or qq annihilation
 - yield should scale faster than \(N_{\text{part}} \) (and it does)

\(\pi^0 \) region: m < 100 MeV

Excess mostly in central AuAu yield increase faster than \(N_{\text{part}} \)
p_T Dependence of Low Mass Enhancement

$p+p$

$\sqrt{s} = 200$ GeV

- $0.0<p_T<0.5$ GeV/c $\times 10^4$
- $0.5<p_T<1.0$ GeV/c $\times 10^3$
- $1.0<p_T<1.5$ GeV/c $\times 10^2$
- $1.5<p_T<2.0$ GeV/c $\times 10^1$
- $2.0<p_T<2.5$ GeV/c

Low mass in Au+Au present at all p_T
Range ~ 500 MeV most prominent at lowest p_T

Au+Au

min. bias Au+Au $\sqrt{s_{NN}} = 200$ GeV

- $0.0<p_T<0.5$ GeV/c $\times 10^6$
- $0.5<p_T<1.0$ GeV/c $\times 10^5$
- $1.0<p_T<1.5$ GeV/c $\times 10^4$
- $1.5<p_T<2.0$ GeV/c $\times 10^3$
- $2.0<p_T<2.5$ GeV/c
- $2.5<p_T<3.0$ GeV/c $\times 10^2$
- $3.0<p_T<4.0$ GeV/c $\times 10^1$
- $4.0<p_T<5.0$ GeV/c $\times 10^0$

Axel Drees
Fit Mass Distribution to Extract the Direct Yield:

- Example: one p_T bin for Au+Au collisions

$$\frac{d\sigma_{ee}}{dMdp_T^2dy} \approx \frac{2\alpha}{3\pi} \frac{1}{M} L(M) \frac{d\sigma_\gamma}{dp_T^2dy}$$

$f_c(m_{ee})$ and $f_{dir}(m_{ee})$ normalized to data for $m_{ee} < 30 \text{ MeV}$

Direct γ^* yield fitted in range 120 to 300 MeV
Insensitive to π^0 yield
Interpretation as Direct Photon

Relation between real and virtual photons:

\[L(M) = \sqrt{1 - \frac{4m_e^2}{M^2}(1 + \frac{2m_e^2}{M^2})} \]

\[\frac{d\sigma_{ee}}{dMd\vec{p}_T^2dy} \approx \frac{2\alpha}{3\pi} \frac{1}{M} \frac{d\sigma_\gamma}{dp_T^2dy} L(M) \]

Extrapolate real \(\gamma\) yield from dileptons:

\[M \times \frac{dN_{ee}}{dM} \rightarrow \frac{dN_\gamma}{dM} \quad \text{for} \quad M \rightarrow 0 \]

Virtual Photon excess
At small mass and high \(p_T\)
Can be interpreted as real photon excess

no change in shape
can be extrapolated to \(m=0\)
Dilepton Excess at High p_T – Small Mass

Significant direct photon excess beyond pQCD in Au+Au

The internal conversion method should also work at LHC!
Search for Thermal Photons via Real Photons

PHENIX has developed different methods:
- Subtraction or tagging of photons detected by calorimeter
- Tagging photons detected by conversions, i.e. e^+e^- pairs
- Results consistent with internal conversion method
First Measurement of Thermal Radiation at RHIC

Direct photons from real photons:
- Measure inclusive photons
- Subtract π^0 and η decay photons at $S/B < 1:10$ for $p_T < 3$ GeV

Direct photons from virtual photons:
- Measure e^+e^- pairs at $m_\pi < m << p_T$
- Subtract η decays at $S/B \sim 1:1$
- Extrapolate to mass 0

First thermal photon measurement:
$T_{\text{ini}} > 220$ MeV $> T_C$

Axel Drees
p_T Dependence of Low Mass Enhancement

Low mass in Au+Au present at all p_T
Range ~ 500 MeV most prominent at lowest p_T
A Look at $p_T < 1$ GeV

1/m dN/dm is not constant
How to extrapolate to $m=0$??
m=0 still real photon yield

Axel Drees
A bit of my own speculation

Use a linear extrapolation to $m=0$ also for $p_T < 1$ GeV

Important to check with Real photons!!!
Apply acceptance correction

Case A: γ^* and e^+e^- in acceptance

Case B: γ^* in acceptance
e^+ and/or e^- NOT in acceptance

correction depends on source
virtual photon polarization
γ^* different from charm
additional uncertainties!!
Mass Dependent Dilepton p_T Spectra

Above m_π Au+Au data enhanced for all p_T most prominent for $p_T < 1$ GeV/c
Local Slopes from Subtracted m_T Spectra

- Subtract cocktail and fit two exponentials in $m_T - m_0$

- Calculate local inverse slope from average m_T for two ranges:

 \[
 0 < m_T - m_0 < 600 \text{ MeV} \\
 0.6 < m_T - m_0 < 2.5 \text{ GeV}
 \]

Graph:
- $300 < m < 750 \text{ MeV}$:

 \[
 258 \pm 37 \pm 10 \text{ MeV}
 \]

- $92 \pm 11 \pm 9 \text{ MeV}$

Soft component below $m_T \sim 500 \text{ MeV}$:

\[
T_{\text{eff}} \sim 100 \text{ MeV} \quad \text{independent of mass}
\]

more than 50% of yield
Comparison to Theoretical Models

A short reminder:

- Models for contributions from hot medium (mostly $\pi\pi$ from hadronic phase)
 - Vacuum spectral functions
 - Dropping mass scenarios
 - Broadening of spectral function

- Broadening of spectral functions worked well at SPS energies (CERES and NA60)

$\pi\pi$ annihilation with medium modified ρ works very well at SPS energies!
In Medium Mesons at RHIC???

- Models calculations with broadening of spectral function:

- \(\pi \pi \) annihilation with medium modified \(\rho \) insufficient to describe RHIC data!

- Rapp & vanHees

- Dusling & Zahed

- Bratkovskaya & Cassing
Model Comparison in p_T after Cocktail Subtraction

Also corrected for pair acceptance

- **$\pi\pi$-annihilation with meson broadening**
 - Hadronic medium insufficient to account for data
 - Unlikely that hadronic contributions were overlooked

- Could there be more contribution from early phase?
 - Models include annihilation based on pQCD
 - Thermal virtual photon contribution?!
Thermal Virtual Photon Contribution

Theory calculation by Ralf Rapp

\[M \times \frac{dN_{ee}}{p_t dp_t dM dy} \propto \frac{dN_{\gamma^*}}{p_t dp_t dy} \]

Real photon yield
Turbide, Rapp, Gale PRC69,014903(2004)

Expect virtual photon yield from QGP! But too small to account for enhancement at low mass

Maybe perturbative calculation not valid at \(dN_g/dy \sim 1000 \)

Axel Drees
Calculation of Thermal Photons

- Reasonable agreement with data
 - factors of two to be worked on...

- Initial temperatures and times from theoretical model fits to data:
 - 0.15 fm/c, 590 MeV (d’Enterria et al.)
 - 0.2 fm/c, 450-660 MeV (Srivastava et al.)
 - 0.5 fm/c, 300 MeV (Alam et al.)
 - 0.17 fm/c, 580 MeV (Rasanen et al.)
 - 0.33 fm/c, 370 MeV (Turbide et al.)

- Correlation between T and \(\tau_0 \)

\[
T_{\text{ini}} = 300 \text{ to } 600 \text{ MeV} \\
\tau_0 = 0.15 \text{ to } 0.5 \text{ fm/c}
\]
Future of the Dilepton Continuum at RHIC

Key experimental issues
- Large combinatorial background prohibits precision measurements in low mass region!
- Disentangle charm and thermal contribution in intermediate mass region!

Need tools to reject photon conversions and Dalitz decays and to identify open charm

PHENIX → hadron blind detector (HBD) vertex tracking (VTX)

HBD is fully operational
- Proof of principle in 2007
- Successful data taking with p+p 2009
- Recorded large Au+Au data set in 2010
HBD Construction

“Standard” CERN Cu GEM foils in HBD

CSI photocathodes on gold GEM foils

2nd HBD installed in PHENIX
Data Analysis from 200 GeV p+p Run 2009

Use reconstructed Dalitz pairs ($m_{ee} < 150$ MeV/c) in PHENIX Central Arms
Match to single or double clusters in HBD

<table>
<thead>
<tr>
<th>Charge of the matched clusters</th>
<th>Pulse height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalitz open pairs</td>
<td></td>
</tr>
<tr>
<td>$m < 0.15$ GeV/c2</td>
<td>Entries</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>RMS</td>
</tr>
<tr>
<td></td>
<td>Underflow</td>
</tr>
<tr>
<td></td>
<td>Overflow</td>
</tr>
<tr>
<td></td>
<td>Integral</td>
</tr>
<tr>
<td></td>
<td>4860</td>
</tr>
<tr>
<td></td>
<td>26.37</td>
</tr>
<tr>
<td></td>
<td>14.52</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>4836</td>
</tr>
</tbody>
</table>

- Single cluster in HBD
 - ~ 22 p.e.

<table>
<thead>
<tr>
<th>Charge of the matched clusters</th>
<th>Pulse height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dalitz close pairs</td>
<td></td>
</tr>
<tr>
<td>$m < 0.15$ GeV/c2</td>
<td>Entries</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>RMS</td>
</tr>
<tr>
<td></td>
<td>Underflow</td>
</tr>
<tr>
<td></td>
<td>Overflow</td>
</tr>
<tr>
<td></td>
<td>Integral</td>
</tr>
<tr>
<td></td>
<td>34616</td>
</tr>
<tr>
<td></td>
<td>40.43</td>
</tr>
<tr>
<td></td>
<td>15.41</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>3.42e+04</td>
</tr>
</tbody>
</table>

- Double cluster in HBD
 - ~ 40 p.e.

90% Dalitz and photon conversion rejection
At 80% pair efficiency
HBD Background Rejection

Rejection in p+p:
- Track matching to HBD
 - Remove late conversions
 - Remove miss identified pions
- Improve S/B by ~ factor 2

- HBD rejection
 - Cut on cluster size
 - Reject tracks with nearby cluster
- Improve S/B by factor > 10

Rejection in Au+Au
- Work in progress
 - works for peripheral collisions
 - Central collisions need refined algorithm
 - ~ 12 PE from scintillation light per channel
Expected Run 10 Performance

\[
\frac{1}{\sqrt{S_{\text{eff}}}} = \sqrt{\frac{\sigma_{\text{stat}}^2 + \sigma_{\text{sys}}^2}{S}} = \sqrt{(\sqrt{S + BG})^2 + (BG \times \sqrt{\sigma_{\text{like}}^2 + (0.2\%)^2})^2}
\]

- **published** \(S \) 200 GeV Au+Au
 - 8 \(10^8 \) min. bias events analyzed
- **Run 10** 200 GeV Au+Au
 - 7 \(10^9 \) min. bias events recorded ± 20cm
 - HBD rejection improves factor ~15
 - Improve errors by factor ~10
- **Run 10** 62.4 GeV Au+Au
 - 6 \(10^8 \) min. bias events recorded ± 20cm
 - Reduced multiplicity
 - Improve errors by factor 4
- **Run 10** 32.9 GeV Au+Au
 - 2 \(10^8 \) min. bias events recorded ± 20cm
 - Further reduced multiplicity
 - Improved errors by factor 2

Expect greatly improved data compared to Run 4
Summary

- **Dilepton Data from PHENIX**
 - well established p+p reference
 - discovered a low mass enhancement in central Au+Au
 mostly in central collisions
 mostly at low m_T component with T~ 100 MeV independent of mass
 - first measurement of thermal photons
 indicate initial temperature > 220 MeV

- **Model comparison**
 - \(\pi\pi\) annihilation with collision broadening insufficient to explain data
 much of the radiation does not come from the hadronic phase!
 - more complete calculation of QGP contribution needed
 maybe in sQGP perturbative approach not ideal!
 - thermal radiation from QGP consistent with direct photon data
 initial temperature 300 to 600 MeV
 uncomfortably large differences between calculations!

- **Outlook:** expect more precise results to come soon
 - d+Au data from run-8 \(\rightarrow\) address IMR excess and give precision baseline
 - Au+Au with HBD from run-10 at 200, 62.4 and 32.9 GeV
Combinatorial Background: Like Sign Pairs

- Shape from mixed events
 - Excellent agreements for like sign pairs

- Normalization of mixed pairs
 - Small correlated background at low masses from double conversion or Dalitz+conversion
 - Normalize B_{++} and B_{--} to N_{++} and N_{--} for $m > 0.7$ GeV
 - Normalize mixed $+ -$ pairs to
 \[
 \langle N_{--} \rangle = 2\sqrt{\langle N_{++} \rangle \langle N_{--} \rangle}
 \]
 - Subtract correlated BG

- Systematic uncertainties
 - statistics of N_{++} and N_{--}: 0.12%
 - different pair cuts in like and unlike sign: 0.2%

Normalization of mixed events:
systematic uncertainty = 0.25%
Differential Background Subtraction

Good agreement between mixed event background and like sign events within systematic errors

0.25% central Au+Au to 3% p+p
p-p Raw Data: Correlated Background

Cross pairs
- Simulate cross pairs with decay generator
- Normalize to like sign data for small mass

Jet pairs
- Simulate with PYTHIA
- Normalize to like sign data

Unlike sign pairs
- Same simulations
- Normalization from like sign pairs

Alternative method
- Correct like sign correlated background with mixed pairs

$$FG_+(m_T, p_T) = 2\sqrt{FG_+FG_{++}} \times \frac{BG_+}{2\sqrt{BG_-BG_{++}}}$$

Signal: $S/B \geq 1$
Uncertainty of Background Subtractions

Combinatorial background $\sigma_{\text{signal}} / \text{signal} = \sigma_{\text{BG}} / \text{BG} \times \text{BG/signal}$

$3\% \times 3 = 10\%$

$0.25\% \times 170 = 50\%$

Subtractions dominate systematic uncertainties but are well under control experimentally!
Cu+Cu Au+Au Comparison

PHENIX Preliminary

STONY BROOK