Applications of AdS/CFT correspondence to cold atom physics

Sergej Moroz

in collaboration with Carlos Fuertes

ITP, Heidelberg
Outline

• Basics of AdS/CFT correspondence
• Schrödinger group and correlation functions
• Nonrelativistic AdS/CFT and cold atoms
• Holographic Efimov effect
Holographic principle

• We have some evidence that

Quantum field theory in \(d\) spacetime dimensions \(\leftrightarrow\) Quantum gravity in higher dimensions

• Holographic radial direction – RG scale
AdS spacetime and its relation to CFT

- Einstein-Hilbert gravity action

\[S = \frac{1}{2\kappa} \int dz d^d x \sqrt{-g} \left(R + \frac{d(d - 1)}{L^2} \right) \]

- Most symmetric solution is Anti-de Sitter spacetime

\[ds^2 = L^2 \frac{dz^2 + \eta_{\mu \nu} x^\mu x^\nu}{z^2} \]

- Isometry group of AdS_{d+1} is $SO(d, 2)$
- Conformal group in $Mink_d$ is also $SO(d, 2)$!
AdS/CFT correspondence

\[\mathcal{N} = 4, \ SU(N_c) \]

in \(d = 4 \) Minkowski \(\leftrightarrow \)

IIB string theory

in \(AdS_5 \times S_5 \)

- Parameters on gauge side: \(g_{YM} \) and \(N_c \)
- Parameters on gravity side: \(L, l_{st} \) and \(\kappa \)

- Mapping

\[
\frac{L}{l_{st}} \sim g_{YM}^2 N_c \quad \frac{L^8}{\kappa} \sim N_c^2
\]

- It is a weak/strong duality
- Classical supergravity is valid if \(N_c^2, g_{YM}^2 N_c \gg 1 \)
Holographic dictionary

<table>
<thead>
<tr>
<th>Boundary QFT</th>
<th>Bulk gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>operator \mathcal{O}</td>
<td>dynamical field ϕ</td>
</tr>
<tr>
<td>scaling dimension $\Delta_\mathcal{O}$</td>
<td>mass m_ϕ</td>
</tr>
<tr>
<td>global symmetry</td>
<td>gauge symmetry</td>
</tr>
<tr>
<td>finite T</td>
<td>Hawking T of a black hole</td>
</tr>
<tr>
<td>entropy</td>
<td>Hawking entropy</td>
</tr>
<tr>
<td>chemical potential</td>
<td>U(1) gauge field</td>
</tr>
</tbody>
</table>

- Correlation functions can be calculated from

$$\langle e^{\int \mathcal{O} \phi} \rangle_{\text{CFT}} = Z_{\text{gravity}}[\phi \to \phi_0]$$
Schrödinger group

- Spacetime symmetries of free Schrödinger/diffusion equation form Schrödinger group $Sch(D)$ Niederer 72, Hagen 72
- Schrödinger group comprises
 - translations P_i and H
 - spatial rotations M_{ij}
 - Galilean boosts K_i
 - number operator N
 - scale transformation $D \Rightarrow$ dynamical exponent $z = 2$
 - special conformal transformation C
- Theory symmetric under $Sch(D)$ is called NRCFT
- Example: two particles with conformal $1/r^2$ potential
Schrödinger group

- Nonrelativistic primary operators \mathcal{O} have well-defined scaling dimension $\Delta_\mathcal{O}$ and particle number $N_\mathcal{O}$ \cite{Nishida&Son08}

\[[D, \mathcal{O}] = i\Delta_\mathcal{O} \quad [N, \mathcal{O}] = N_\mathcal{O} \]

and commute with Galilean boosts K_i and special conformal transformation C

\[[K_i, \mathcal{O}] = 0 \quad [C, \mathcal{O}] = 0 \]

Descendants are formed by commutators with P_i and H

- Kinematic invariants of $Sch(D)$ group \cite{Volovich&Wen09}
 - mixed invariants $\nu_{ijn} = \frac{(\vec{x}_{intjn} - \vec{x}_{jn}t_{in})^2}{2t_{ij}t_{intjn}}$ \quad $i < j < n$
 - time cross-ratios $\frac{t_{ij}t_{kl}}{t_{ik}t_{jl}}$
Correlators in Euclidean NRCFT

- Schrödinger symmetry and causality impose constraints on the correlators of the primary fields

- 2-point function is fixed up to a constant \((\bar{x} = (\vec{x}, t))\)

\[
G_2(\bar{x}_1, \bar{x}_2) = C \delta_{\Delta_1, \Delta_2} \delta_{M_1, M_2} \theta(t_{12}) t_{12}^{-\Delta_1} \exp \left[-\frac{M_1}{2} \frac{\bar{x}_{12}^2}{t_{12}} \right]
\]

- 3-point function is determined up to a function \(\Psi(v_{123})\)

\[
G_3(\bar{x}_1, \bar{x}_2, \bar{x}_3) = \delta_{M_1+M_2, M_3} \theta(t_{13}) \theta(t_{23}) \prod_{i<j} t_{ij}^{-\Delta_{ij,n}/2} \times \\
\exp \left[-\frac{M_1}{2} \frac{\bar{x}_{13}^2}{t_{13}} - \frac{M_2}{2} \frac{\bar{x}_{23}^2}{t_{23}} \right] \Psi(v_{123})
\]

- 4-point function is determined up to a non-universal function

\(\Psi\left(\frac{t_{12}t_{34}}{t_{14}t_{32}}, v_{124}, v_{134}, v_{234}\right)\)
Two-component fermions at unitarity

• Vacuum theory is defined by action

\[S[\psi, \phi] = \int dt d^Dx \left[\sum_{i=1}^{2} \psi_i^*(i\partial_t + \frac{\Delta}{2m})\psi_i - \frac{1}{c_0} \phi^* \phi + (\phi^* \psi_1 \psi_2 + \phi \psi_2^* \psi_1^*) \right] \]

• Bare parameter c_0 is related to scattering length a and cut-off Λ

• Unitarity regime $a^{-1} \to 0 \Rightarrow$ no intrinsic length scale in theory

• Exact propagators and scaling dimensions of ψ and ϕ can be determined analytically

• Fermions at unitarity are believed to be symmetric under the full Schrödinger group

Mehen et al. 2000

• It is believed to be NRCFT (primary operators, operator/state correspondence, conformal Ward identities)

Nishida&Son 08
Nonrelativistic AdS/CFT

• NRCFT in D dimensions \iff gravity theory in higher dimensions?

• Schrödinger algebra $Sch(D)$ is a subalgebra of the conformal algebra $so(D + 2, 2)$ in $Mink_{D+2}$ that commutes with the light-cone momentum P^+

• Deformation of AdS_{D+3} in light-cone coordinates leads to the new Sch_{D+3} metric

$$ds^2 = -\frac{dt^2}{z^4} + \frac{-2dtd\xi + dx^i dx^i + dz^2}{z^2} \quad i = 1, \ldots, D$$

Son 08, Balasubramanian&McGreevy 08

• Isometries of Sch_{D+3} obey the Schrödinger algebra $Sch(D)$

• ∂_ξ corresponds to the particle number generator N and coordinate ξ is possibly compact
3-point function G_3 in cold atoms

- We compute $G_3 = \langle \psi_1(\vec{x}_1)\psi_2(\vec{x}_2)\phi^*(\vec{x}_3) \rangle$ at unitarity regime in position space by performing integration over \vec{x}

- Two important points
 1. no condensate in non-relativistic vacuum $\langle \psi \rangle = 0$, $\langle \phi \rangle = 0$
 2. Yukawa vertex is not renormalized in vacuum

- G_3 is completely determined by $\Delta_\psi = \frac{D}{2}$ and $\Delta_\phi = 2$
3-point function G_3

- Agreement with Schrödinger Ward identities

 - We determined the non-universal scaling function for $D > 2$

 $$
 \Psi(y) \sim y^{\frac{D}{2}+1} \gamma\left(\frac{D}{2} - 1, y\right),
 $$

 where $\gamma(n, y) = \int_0^y t^{n-1} e^{-t} dt$

- AdS/CFT gives non-universal scaling function

 $$
 \Psi(y) \sim \int_{\mathbb{R}+i\epsilon} dv \int_{\mathbb{R}+i\epsilon'} dv' e^{-iM_1 v - iM_2 v'} \times
 $$

 $$(v - v' + i y)^{-\Delta_{12,3}/2} (v')^{-\Delta_{23,1}/2} v^{-\Delta_{13,2}/2},$$

 where $\Delta_{i,j,k} = \Delta_i + \Delta_j - \Delta_k$
3-point function G_3 from AdS/CFT

- We take unitarity scaling $\Delta_1 = \Delta_2 = D/2$, $\Delta_3 = 2$ and perform double contour integration

$$\Psi(y) \sim y^{-\frac{D}{2} + 1} \gamma\left(\frac{D}{2} - 1, y\right)$$

- Non-universal scaling function $\Psi(y)$ agrees with unitarity cold atoms result! [Fuertes & SM 09]

- We take free scaling dimension $\Delta_1 = \Delta_2 = D/2$ and $\Delta_3 = D$ and perform double contour integration

$$\Psi(y) = \text{const}$$

- Agreement with free QFT

- Possibly AdS/CFT describes both free and unitarity regime [Son 08]
Bosons at unitarity

- The action is similar

$$S[\psi, \phi] = \int dt d^D x \left[\psi^* \left(i \partial_t + \frac{\Delta}{2m} \right) \psi - \frac{1}{c_0} \phi^* \phi \right.$$

$$+ (\phi^* \psi \psi + \phi \psi^* \psi^*) \right]$$

- Unitarity regime $a^{-1} \rightarrow 0 \Rightarrow$ no intrinsic length scale in theory

- Can be prepared in cold atoms experiments, e.g. $^7\text{Li}, ^{133}\text{Cs}$...

- Two-body problem is similar to fermions

- It is not NRCFT due to the Efimov effect
Three-body problem and the Efimov effect

Energy spectrum near the unitarity regime

- At unitarity $a = \pm \infty$ spectrum becomes geometric

\[\frac{E_T^{(n+1)}}{E_T^{(n)}} \rightarrow e^{-2\pi/s_0} \quad \text{as } n \rightarrow \infty \quad s_0 \approx 1.0062 \]

- The spectrum is manifestation of scale quantum anomaly

- In RG language \rightarrow limit cycle solution
Breitenlohner-Freedman bound in AdS_{d+1}

- Free complex scalar

$$S[\phi, \phi^*] = -\int dz d^d x \sqrt{-g} \left(g^{\mu\nu} \partial_\mu \phi^* \partial_\nu \phi + m^2 \phi^* \phi \right)$$

in AdS_{d+1} spacetime

$$ds^2 = \frac{dz^2 + \eta^{\mu\nu} dx_\mu dx_\nu}{z^2}$$

- Fourier transform $x^\mu \rightarrow q^\mu$ on the boundary and change variables $\psi = z^{(1-d)/2} \phi$

$$-\partial_z^2 \psi + \frac{m^2 + \frac{d^2-1}{4}}{z^2} \psi = -q^2 \psi, \quad q^2 \equiv -(q^0)^2 + \vec{q}^2$$

- Map onto 1D QM problem with inverse square potential!
Inverse square potential in QM

\[-\partial_z^2 \psi - \frac{\kappa}{z^2} \psi = E \psi\]

• The potential is singular and must be regularized

• Two branches of solution

 • \(\kappa < \kappa_{cr} = \frac{1}{4}\) → no bound states, continuous spectrum

 • \(\kappa > \kappa_{cr}\) → infinite geometric bound state spectrum

• In our mapping

\[E < 0 \Rightarrow (q^0)^2 < 0\]

\[\kappa > \kappa_{cr} \Rightarrow m^2 < m_{BF}^2 = -\frac{d^2}{4}\]

• The bound was first derived from positivity of conserved energy functional of scalar fluctuations Breitenlohner&Freedman 82
No BF bound in Sch_{D+3}

- Free complex scalar in Sch_{D+3}

$$S[\phi, \phi^*] = - \int dz dt d\xi d^Dx \sqrt{-g} \left(g^{\mu\nu} \partial_\mu \phi^* \partial_\nu \phi + m_0^2 \phi^* \phi \right)$$

- Mapping onto Schrödinger equation

$$-\partial^2_z \psi + \frac{m^2 + \frac{(D+2)^2-1}{4}}{z^2} \psi = -\tilde{q}^2 \psi, \quad \tilde{q}^2 \equiv -2M\omega + \vec{q}^2$$

- Due to nonrelativistic dispersion

$$E < 0 \Rightarrow \omega < 0$$

- Nothing special happens at $m^2 = m_{BF}^2 = -\frac{(D+2)^2}{4}$

- No stability bound in nonrelativistic AdS/CFT!
Two-point correlator $\langle OO^\dagger \rangle$ for $m^2 < m_{BF}^2$

- Using standard AdS/CFT machinery we can calculate

$$\langle OO^\dagger \rangle \sim \tan \{ |\nu| \ln \tilde{q} + \gamma \},$$

where $\nu = \sqrt{\frac{(D+2)^2}{4} + m^2}$ and $\tilde{q}^2 \equiv -2M\omega + \bar{q}^2$

- Properties
 - $\langle OO^\dagger \rangle$ is log-periodic in \tilde{q}
 - Operator O describes infinitely many particles

$$\frac{\omega_{n+1}}{\omega_n} = \exp \left(-\frac{2\pi}{|\nu|} \right)$$

- Continuous scale symmetry is broken \rightarrow limit cycle solution
- γ determines initial UV position on RG limit cycle
Limit cycles in QM and complex Δ

- Efimov effect
 - Trimer operator $O = \psi \phi$ has
 \[
 \Delta_{\pm} = \frac{5}{2} \pm i s_0
 \]

- QM with $1/r^2$ potential in D dimensions
 - For $\kappa > \kappa_{cr} = \frac{(D-2)^2}{4}$, composite $O = \psi \psi$ acquires complex scaling dimension
 \[
 \Delta_{\pm} = \frac{D + 2}{2} \pm \sqrt{\frac{(D - 2)^2}{4} - \kappa}
 \]

- If described by AdS/CFT $\rightarrow m^2 < m^2_{BF}$
Conclusion and outlook

- AdS/CFT was extended to nonrelativistic physics
- Schrödinger symmetry is powerful
- Agreement of specific 3-point function, but better understanding?
- Limit cycles can be realized in nonrelativistic AdS/CFT
- Calculate limit cycle two-point function in QM and compare with holographic prediction
Extra slides
Applications to condensed matter physics

- Holographic systems with Schrödinger symmetry
- Holographic superfluids
- Holographic non-Fermi liquids
- Holographic systems with Lifshitz symmetry
Schrödinger algebra

- Centrally extended Galilei algebra

\[
[M_{ij}, M_{kl}] = i(\delta_{ik} M_{jl} - \delta_{jk} M_{il} + \delta_{il} M_{kj} - \delta_{jl} M_{ki}) ,
\]

\[
[M_{ij}, K_k] = i(\delta_{ik} K_j - \delta_{jk} K_i) , \quad [M_{ij}, P_k] = i(\delta_{ik} P_j - \delta_{jk} P_i) ,
\]

\[
[P_i, K_j] = -i\delta_{ij} N , \quad [H, K_j] = -iP_j .
\]

- Additionally

\[
[P_i, D] = -iP_i \quad , \quad [P_i, C] = -iK_i \quad , \quad [K_i, D] = iK_i \quad ,
\]

\[
[D, C] = -2iC \quad , \quad [D, H] = 2iH \quad , \quad [C, H] = iD .
\]

- The generators H, D and C close a subalgebra $sl(2, R)$