Small-x physics and QCD reggeon field theory

Jochen Bartels

Seattle Workshop, October 2009

• Introduction
• Theoretical issues
• Applications: DIS at small x, other items
• Outlook
Why this (theoretical) talk?

In doing high energy QCD calculations we are using different formalisms, e.g.

- Feynman diagrams in momentum space (configuration space)
- light cone perturbation theory
- dipole picture

Each formalism useful in its field of application, equivalence and connections mostly (but not fully: reggeization) understood.

QCD reggeon field (RFT) theory results from the first approach in momentum space, has direct application to cross sections.
Expect: RFT is a reformulation of QCD at high energies (Regge limit), i.e. high energy behavior of QCD scattering amplitudes can be cast into reggeon diagrams.

But: when doing a calculation, one may have to perform resummations (bootstrap, effective action).

This talk: discuss a few examples where this formulation is particularly useful.
Reggeon field theory: theoretical remarks

QCD reggeon field theory (Gribov):
Concept: reformulation of high energy QCD in terms of reggeized gluons (not: Pomeron fields) and interaction vertices = (nonlocal) field theory in 2+1 dimensions:

\((\vec{k}_t, E = 1 - j = -\omega) \leftrightarrow (\vec{b}, y = \ln s)\)

Natural/historical starting point are momentum space Feynman diagrams.
Bound state problem:

n gluon state has rich spectrum of 'bound states' (BFKL, BKP), depends upon (color) quantum numbers.

Gluon plays very special role because of 'bootstrap': 'diagrams can be drawn in different ways'

\[\sum_{g_A} \quad = \quad \text{reggeized gluon} = \text{bound state of two reggeized gluons.} \]

Holds in LO, NLO (and beyond?)
In pQCD: all elements can be computed in perturbation theory. How much has been done:

- gluon trajectory in NNLO (all orders from AdS/CFT)
- $2 \to 2$ interaction = BFKL kernel in NLO
- $n \to n$ interaction = BKP evolution
- $2 \to 4$ in NLO
- $2 \to 6$ in LO
- several impact factors (few in NLO)

What has been computed:

- spectrum of BFKL
- bound state of three gluons: Odderon
- bound states of n gluons at large N_c: integrability
Physical picture: s-channel vs. t channel

Reggeon field theory starts from t-channel:
'reggeon unitarity' (Gribov, Pomeranchuk), model independent

Main concept: t-channel states (symmetries).

In QCD: reggeon diagrams are derived from (momentum space) Feynman diagrams which can also be viewed from the s-channel and/or in configuration space: 'space-time picture'.
All contributions (reggeon diagrams) are frame independent. For physical picture: fix the Lorentz frame (role of time).

Two examples:
1) Convenient in DIS: target rest frame.
Use non-covariant (old-fashioned) perturbation theory: (Gribov; Weinberg)
Fourier transform and integration over energies → time-ordered diagrams:

Only one sequence in t, z, dominates:

$$t_1 < t_2 < \ldots < t_n < t'_n < t' < \ldots t'_2 < t'_1$$
2) Light cone picture (Balitsky):

\[p_1 = \left(\frac{\sqrt{s}}{2}, 0, 0, \frac{\sqrt{s}}{2} \right), \quad p_2 = \left(\frac{\sqrt{s}}{2}, 0, 0, -\frac{\sqrt{s}}{2} \right) : \quad p_A = p_1 + \frac{p_A^2}{s} p_2 + p_{A\perp}, \quad p_B = p_2 + \frac{p_B^2}{s} p_1 + p_{B\perp} \]

Regge limit for

\[< O(x_A) O(x_B) O(x_{A'}) O(x_{B'}) > : \]

\[x_{A+}, x_{B-} \to -\infty \]
\[x_{A' +}, x_{B' -} \to +\infty \]

Result: choose picture suitable for the problem.
AGK cutting rules (Abramovsky, Gribov, Kancheli)

Underlying question: decompose a reggeon diagram into intermediate states (unitarity) → cutting rules:

\[\text{disc } T_{2 \to 2} = \sum \int T_{2 \to n} T_{2 \to n}^* \]

These rules were derived before the advent of QCD. They do not only apply to the Pomeron:

\[\text{diffractive : absorptive : double } = 1: (-4): 2 \]
Also: cuts across a reggeized gluon, relevant for diffraction in DIS (see below)

\[\frac{\text{diffRACTiVe}}{\text{absorPTiVe}} : \text{double} = 1 : O(g^4) : O(g^4) \]

Inclusive cross section: rescattering cancels (factorization theorem)
Application: DIS at small x

A. Total cross section (all inclusive):

DIS on proton and nuclei:

Large-N_c limit: fan diagrams, $2 \rightarrow 4$ gluon vertex \rightarrow BK-kernel, BK equation, saturation,.. Connection between different languages well understood.
Define states at 'time' rapidity x:

$$|p(y)\rangle = e^{yH}|p(y = 0)\rangle, \quad H = H_{2\rightarrow2} + H_{2\rightarrow4} + H_{4\rightarrow2} + \ldots$$

n-gluon wave functions $\Psi_n = < n | p(y) \rangle$ satisfies set of coupled equations (JIMWLK):

$$\frac{\partial}{\partial y} \Psi_n = \sum_{n'} < n | H | n' \rangle \otimes \Psi_{n'}$$

Mean field approximation: $\Psi_4 = \Psi_2 \Psi_2$, obtain closed BK equation

$$\frac{\partial}{\partial y} \Psi_2 = < 2 | H | 2 \rangle \otimes \Psi_2 + < 2 | H_{4\rightarrow2} | 4 \rangle \otimes \Psi_2 \otimes \Psi_2$$

Expect: near saturation region need to include 'Pomeron loops': include $H_{4\rightarrow2}$ and $H_{2\rightarrow4} \rightarrow$ infinite set of equations.
Fan diagrams vs. higher twist:
at large N_c, triple Pomeron vertex decouples for all higher twist (JB, Wuesthoff, Kutak)

Consequence:
description in terms of fan diagrams has no twist expansion
(decoupling of mixing of non-quasipartonic operators).
B. Diffraction

Maybe not obvious: fan diagrams contain elastic rescattering.

Bootstrap identities allow to rewrite diagrams.

= + + + ...
Consequences for diffraction in DIS: be careful with AGK counting.
What we might want to do:

\[1 : (-4) : 2 \]

diffractive cross section

full screening corrections

But: 'diffractive cross section' contains NLO contribution to BFKL (some models not correct):

\[1 \]

\[8 \]
C. Inclusive jet cross section

First step beyond the total cross section: one-jet inclusive jet cross section. (JB, Salvadore, Vacca) Result:

Consequence: evolution equations below the jet involve higher correlators (3 gluon,...), i.e. they are no longer of the BK type.
Potential disagreement with other calculations (Kovchegov, Tuchin, Braun, Kovner et al, Blaizot et al, Levin et al,...).
Double inclusive cross section: signal important for saturation!
D. Baryons (JB, Motyka):

Beyond color dipoles: replace, in DIS, photon by a baryonic current (no large N_c):

Extra color configuration, evolution the same as for the QCD Odderon. Can decay into two dipoles.

'Heavy baryon' states as a new testing laboratory?
E. Inclusive jets in nucleus-nucleus scattering

'Braun equation’, inclusive cross section: (Braun)

Attempts to solve 'Braun equation’ (Motyka, Bondarenko).
1-jet inclusive: is the evolution more complicated?
F. Multiple interaction, underlying event:

Theoretical understanding unsatisfactory, reggeon diagrams could be helpful.
G. Survival probability in diffractive Higgs production

Attractive channel for Higgs production at the LHC: double diffractive final states

Hard rescattering: large corrections (JB, Motyka; Miller)

Needs complete summation.
Conclusion

Results:

- scattering amplitudes, cross sections can be formulated in terms of reggeon diagrams (leading log, generalized leading log, NLO, NNLO, Lipatov’s effective action)
- in general, comparison of different approaches useful
- examples where RFT seems particularly useful

To be addressed:

- diffraction in DIS, single and double inclusive cross section in eA
- nucleus-nucleus scattering
- multiple interactions at LHC
- survival probabilities (diffractive Higgs production)

Theoretical task: find RFT solutions beyond BK equation (near saturation region)