Quarkonium Production Mechanism and Reliability of pQCD Calculation

Jianwei Qiu
Iowa State University

Based on work done with Kang, Nayak and G. Sterman
Good probes for a dense medium

- **Basic requirements:**
 - Can be cleanly measured experimentally
 - Can be reliably calculated theoretically

- **Necessary conditions:**
 - Sensitive to the scales and properties of the strongly interacting matter – low momentum scale (a few hundred MeV)
 - Large momentum transfer to ensure pQCD calculation
 - a hard probe sensitive to low momentum physics

- **Potentially good probes:**
 - Have two observed scales (one hard and one soft)
 - Have one observed hard scale and a steeply falling distribution
Quarkonium could be a good probe

- It has two intrinsic scales:
 - **Heavy quark mass:**
 - Heavy quark pairs are produced at a distance scale much less than fm

 \[\Delta r \sim \frac{1}{2m_Q} \leq 0.1 \text{ fm (for a charm-quark pair)} \]

 \[\leq 0.025 \text{ fm (for a b-quark pair)} \]

 - PQCD is expected to work for the production of heavy quarks
 - **Quarkonium binding energy:**

 \[\frac{|M^2 - 4m_Q^2|}{4m_Q^2} \ll 1 \]

 for both charm and bottom quarkonia

- The transition from a heavy quark pair to a quarkonium should be sensitive to the soft physics at the medium temperature
J/ψ Suppression in QGP

- Heavy quarkonium provides a non-relativistic system
 – controlled approximation: potential model, EFT, ...

\[\frac{v^2}{c^2} \sim \frac{k_Q^2}{m_Q^2} \sim \frac{|M^2 - 4m_c^2|}{4m_c^2} \sim 0.3 \quad \text{Bottom:} \quad \frac{v^2}{c^2} \sim 0.1 \]

- Color screening in QGP suppresses the formation of J/ψ
 - Potential: \(V_{Q\bar{Q}}(r) \Rightarrow V_{Q\bar{Q}}(r, T) \)
 - Wave function: \(\Phi_{Q\bar{Q}}(r) \Rightarrow \Phi_{Q\bar{Q}}(r, T) \)
 - J/ψ formation rate \(\propto \left| \Phi_{Q\bar{Q}}(r, T) \right|^2 \)

J/ψ suppression \(\Leftrightarrow \) medium properties

Matsui & Satz (1986)

- Calibration:
 - Do we understand the production mechanism of J/ψ well enough to calibrate the production rate and extract the information on QGP?
The basic production mechanism

- **Production of an off-shell heavy quark pair:**

 ![Diagram showing the production process](image)

 - Coherent soft interaction
 - Perturbative
 - Non-perturbative

 \[\Delta r \leq \frac{1}{2m_q} \]

- **Approximation:** **on-shell heavy quark pair + hadronization**

 \[\sigma_{AB \rightarrow h} = \sum_{states} \int d\Gamma_{Q\bar{Q}} \frac{d\sigma_{AB \rightarrow states(Q\bar{Q})}}{d\Gamma_{Q\bar{Q}}} F_{states(Q\bar{Q}) \rightarrow h}(p_Q, p_{\bar{Q}}, p_h) \]

Different models ⇔ Different assumptions/treatments on how the heavy quark pair becomes a quarkonium?
Popular production models

- **Color singlet model:**
 - Only pairs with right quantum number can become quarkonia
 - Non-perturbative part \sim decay wave function squared

- **Color evaporation model:**
 - All colored or color singlet pairs with invariant mass less than open charm threshold could become bound quarkonia
 - Non-perturbative part $= \text{one constant per quarkonium state}$

- **NRQCD model:**
 - All colored or color singlet pairs could become quarkonia
 - Power expansion in relative velocity of heavy quark pairs
 - Non-perturbative part $= \text{one matrix element per } Q\bar{Q} \text{ state}$

\[
\sigma_{AB \rightarrow J/\psi} (M_{J/\psi}) \approx \sum_{[O]} \sigma_{AB \rightarrow [O]} \left(m_{c\bar{c}}^2 = M_{J/\psi} \right) \langle O_{J/\psi} (0) \rangle
\]
CSM: Huge high order corrections

Color-singlet contribution for J/ψ and Upsilon production at Tevatron

P. Artoisenet, F. Maltoni, et.al. 2007

Large uncertainty band
⇒ strong scale dependence

Large NLO, NNLO contribution
⇒ how perturbative series converge?
CEM: OK for inclusive production

- Good for total cross section, ok for P_T distribution:

Amundson et al, PLB 1997
CEM: Resummation of pQCD logs

CEM with all order resummation of soft gluon shower

Berger, Qiu, Wang, 2005
NRQCD Model: Best fit to Tevatron data

Unpolarized J/ψ at the Tevatron:

NRQCD model gave the best description of P_T distribution of various inclusive heavy quarkonium production at Tevatron, with matrix elements fixed by data.
Polarization of quarkonium at Tevatron

- Measure angular distribution of $\mu^+\mu^-$ in J/ψ decay

![Diagram of J/ψ decay with μ^+, μ^-, and directions indicated.]

- Normalized distribution:

$$I(\cos \theta^*) = \frac{3}{2(\alpha + 3)} \left(1 + \alpha \cos \theta^* \right)$$

$$\alpha = \begin{cases}
+1 & \text{fully transverse} \\
0 & \text{unpolarized} \\
-1 & \text{fully longitudinal}
\end{cases}$$
Surprises from polarization measurements

- Transverse polarization at high p_T?

NRQCD: Cho & Wise, Beneke & Rothstein, 1995, ...

CDF Collaboration, PRL 2007
Exclusive production in e^+e^-

- **Double charm production:**

<table>
<thead>
<tr>
<th>J/ψ c\bar{c}</th>
<th>$\eta_c(1S)$</th>
<th>χ_{c0}</th>
<th>$\eta_c(2S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABAR</td>
<td>17.6 ± 2.8$^{+1.5}_{-2.1}$</td>
<td>10.3 ± 2.5$^{+1.4}_{-1.8}$</td>
<td>16.4 ± 3.7$^{+2.4}_{-3.0}$</td>
</tr>
<tr>
<td>Belle [14]</td>
<td>25.6 ± 2.8 ± 3.4</td>
<td>6.4 ± 1.7 ± 1.0</td>
<td>16.5 ± 3.0 ± 2.4</td>
</tr>
<tr>
<td>NRQCD [6]</td>
<td>2.31 ± 1.09</td>
<td>2.28 ± 1.03</td>
<td>0.96 ± 0.45</td>
</tr>
<tr>
<td>NRQCD [4]</td>
<td>5.5</td>
<td>6.9</td>
<td>3.7</td>
</tr>
</tbody>
</table>

- **Possible resolution for $J/\psi + \eta_c$:**

 - NLO correction: $K_{\text{factor}} = 1.96$
 - Relativistic Correction:
 - X-section: $K_{\text{factor}} = 1.34$
 - Wave func: $K_{\text{factor}} = 1.32$
 - Combined: $K_{\text{factor}} = 4.15$

\[
\sigma[e^+e^- \rightarrow J/\psi + \eta_c] = 17.5 \pm 5.7 \text{ fb}
\]

Zhang, Gao, Chao, PRL

Bodwin et al. hep-ph/0611002
Inclusive production in e^+e^-

- **Charm associated production:**
 \[\sigma(e^+e^- \rightarrow J/\psi c\bar{c}) \]
 - **Belle:** $(0.87^{+0.21}_{-0.19} \pm 0.17)$ pb
 - **NRQCD:** ~ 0.07 pb

- **Ratio to light flavors:**
 \[\frac{\sigma(e^+e^- \rightarrow J/\psi c\bar{c})}{\sigma(e^+e^- \rightarrow J/\psi X)} \]
 - **Belle:** $0.59^{+0.15}_{-0.13} \pm 0.12$

- **Message:**
 Production rate of $e^+e^- \rightarrow J/\psi c\bar{c}$ is larger than all these channels: $e^+e^- \rightarrow J/\psi gg$, $e^+e^- \rightarrow J/\psi q\bar{q}$, ... combined?
Questions

- Is the key approximation:
 production of an on-shell heavy quark pair
 + hadronization for the pair to a quarkonium valid?

 The approximation of producing a long-lived
 “on-shell” pair is necessary for the factorization

- Is there a better description of the nonperturbative
 hadronization of the QQ pair?
None of the factorized production models, including NRQCD model, were proved theoretically.

Factorization of NRQCD model fails for low p_T.

Factorization of NRQCD model might work for large p_T. Spectator interactions are suppressed by $(1/p_T)^n$.

Factorization is necessary for the predictive power.
Long-lived parton states

- **Perturbative pinch singularity:**
 \[
 \propto \int d^4k \, \mathcal{H}_{gg \to g}(Q, k) \frac{1}{k^2 + i\epsilon} \frac{1}{k^2 - i\epsilon} \mathcal{D}_{g \to J/\psi}(k, P)
 \]

- **Dominated by** \(k^2 \sim 0\) **region**

- **Parton model collinear factorization:**
 \[
 \approx \int \frac{dz}{z} d^2k_\perp \mathcal{H}_{gg \to g}(Q, k^2 = 0) \int dk^2 \frac{1}{k^2 + i\epsilon} \frac{1}{k^2 - i\epsilon} \mathcal{D}_{g \to J/\psi}(k, P)
 \]

- **Long-lived parton state**

- **Fragmentation function**

- **Short-distance part**
Production of heavy quark pairs

- Perturbative pinch singularity: Kang, Qiu and Sterman, 2009

\[P^\mu = (P^+, 4m^2/2P^+, 0_\perp) \]
\[q'^\mu = (q^+, q^-, q_\perp) \]
\[q \neq q' \]
\[D_{ij}(P, q) \propto \langle J/\psi | \psi_i^\dagger(0) \chi_j(y) | 0 \rangle \]

- Scattering amplitude:

\[\mathcal{M} \propto \int \frac{d^4q}{(2\pi)^4} \text{Tr} \left[\hat{H}(P, q, Q) \frac{\gamma \cdot (P/2 - q) + m}{(P/2 - q)^2 - m^2 + i\varepsilon} \hat{D}(P, q) \frac{\gamma \cdot (P/2 + q) + m}{(P/2 + q)^2 - m^2 + i\varepsilon} \right] \]

- Potential poles:

\[q^- = \frac{q^2_\perp - 2m^2(q^+/P^+)}{(P^+ + 2q^+)} - i\varepsilon \theta(P^+ + 2q^+) \rightarrow q^2_\perp/P^+ - i\varepsilon \]
\[q^- = -\frac{q^2_\perp + 2m^2(q^+/P^+)}{(P^+ - 2q^+)} + i\varepsilon \theta(P^+ - 2q^+) \rightarrow -q^2_\perp/P^+ + i\varepsilon \]

- Condition for pinched poles:

\[P^+ \gg q^+(2m^2/q^2_\perp) \geq 2m \quad \text{High } P_T \]
Sources of contributions

- **Fragmentation contribution:**

- **Direct contribution:**

- **S-channel contribution:**
Factorization: fragmentation contribution

- **Fragmentation contribution at large P_T**

 Fragmentation function – gluon to a hadron H (e.g., J/ψ):

 \[
 d\sigma_{A+B\to H+X}(p_T) = \sum_i d\bar{\sigma}_{A+B\to i+X}(p_T/z, \mu) \otimes D_{H/i}(z, m_c, \mu) + O(m_H^2/p_T^2)
 \]

 Cannot get fragmentation func. from PDFs or decay matrix elements
The proof works in two steps

- **Step 1:** Fragmentation factorizes from the rest

 - Reduced diagram
 - Still has long-distance physics due to incoming hadrons

 - Fragmentation function
Step 2: Cancellation of remaining IR final state:

Note: Uncut loops are short distance

Remaining soft-interaction absorbed into the Wilson lines of PDFs

H is IR safe!
The Wilson line in x^- direction ($n^\mu = \delta_{\mu -}$)

$$\Phi^{(g)}(x^-) = P \exp \left[-ig \int_0^\infty n \cdot A^{(adj)} \left((x^- + \lambda)n \right) \right]$$

Which depends on the “direction” vector: n^μ

For the fragmentation function, or the jet, all that is left is gluon source:

A necessary condition for the factorization, or the universality of the fragmentation function is:

The fragmentation function is independent of the n^μ
Connection to NRQCD Factorization

- Proposed NRQCD factorization:
 \[d\sigma_{A+B\rightarrow H+X}(p_T) = \sum_n d\tilde{\sigma}_{A+B\rightarrow c\bar{c}[n]+X}(p_T) \langle O^H_n \rangle \]

- Proved pQCD factorization for single hadron production:
 \[d\sigma_{A+B\rightarrow H+X}(p_T) = \sum_i d\tilde{\sigma}_{A+B\rightarrow i+X}(p_T/z, \mu) \otimes D_{H/i}(z, m_c, \mu) + O(m^2_H/p^2_T) \]

- Prove NRQCD Factorization

 To prove:
 \[D_{H/i}(z, m_c, \mu) = \sum_n d_{i\rightarrow c\bar{c}[n]}(z, \mu, m_c) \langle O^H_n \rangle \]

 with
 - IR safe
 - gauge invariant and universal
 - independent of the direction of the Wilson lines
Gauge Invariance and Wilson lines

- Conventional operator definition (in Q̄Q rest frame)
 \[\mathcal{O}_n^H(0) = \chi^\dagger \mathcal{K}_n \psi(0) \left(a_H^\dagger a_H \right) \psi^\dagger \mathcal{K}_n' \chi(0) \]

- \(\psi \), \(\chi \) are heavy quark, antiquark fields

- \(\mathcal{K}_n, \mathcal{K}_n' \): Products of color and spin matrices, covariant derivatives

- Fields at \(x = 0 \) but \(\mathcal{O}_n^H \) is not truly local

- Operator-valued gauge transformations (as to \(A^+ = 0 \) gauge) do not commute with \(a_H^\dagger a_H \)

- Only color-singlet \(\mathcal{K}' \)s give gauge invariant \(\mathcal{O}' \)s
 or, the color-octet operators are not gauge invariant
Resolution: supplement fields by Wilson lines:

$$\Phi_l[x, A] = \exp \left[-ig \int_0^\infty d\lambda \cdot A(x + \lambda l) \right]$$

Our new, gauge invariant operators:

$$\mathcal{O}^H_n(0) \to \chi^\dagger \mathcal{K}_{n,c} \psi(0) \Phi_l^\dagger[0, A]_{cb} \left(a_H^\dagger a_H\right) \Phi_l[0, A]_{ba} \chi^\dagger \mathcal{K}'_{n,a} \psi(0)$$

Two remaining questions for NRQCD factorization:

- Are the “coefficient” functions $d_{g\to c\bar{c}[n]}(z, \mu, m_c)$ IR safe?
 - Our NNLO answer is no The lines are necessary
- Do the lines absorb all IR divergences?
 - Can’t tell yet for sure. OK at NNLO in α_s and all powers in v

Key difficulty:

Cancelation of $l \cdot q$ dependence – line direction
Factorization at NNLO and all orders in v^2

- Calculation with a finite v

\[\mathcal{I}^{(8\rightarrow 1)} = \frac{\alpha_s^2}{4\varepsilon} \left[1 - \frac{1}{2 f(|\vec{v}|)} \ln \left[\frac{1 + f(|\vec{v}|)}{1 - f(|\vec{v}|)} \right] \right] \]

with

\[f(v) = \frac{2v}{1 + v^2} \quad \vec{v} = \vec{q}/E^* \]

$2E^*$ is the total energy of the heavy quark pair

(QQ rest frame)

- Reproduce the v^2 result when expanded
Factorization at a finite v?

- Velocity expansion is not efficient for charmonium prod.
 - Large phase space available for gluon radiation:
 \[Q^2 - 4m_c^2 \Rightarrow 4M_D^2 - 4m_c^2 \approx 6\text{GeV}^2 \]
 - Large possible velocity in production:
 \[v_{\text{prod}} \sim \frac{|k_c|}{m_c} \sim \sqrt{\frac{4M_D^2 - 4m_c^2}{4m_c^2}} \sim 0.88 \]
 - Very different from decay:
 \[v_{\text{decay}} \sim \sqrt{\frac{M_{J/\psi}^2 - 4m_c^2}{4m_c^2}} \sim 0.48 \]

- Polarization at high P_T:
 - Understand $D_{f \rightarrow J/\psi}(z, \mu_0, m_c)$ with $\mu_0 > 2m_c$
 - DGLAP resums $\ln^n(\mu/\mu_0)$ and does not generate the “longitudinal” polarization seen at Tevatron

Qiu, Rodriguez, Zhang, 2001

June 22, 2009

Jianwei Qiu, ISU
Factorization for total cross section

- Total cross section of heavy quark pairs:
 - Examined structure of low order diagrams
 - Conjecture:
 Cross section can be reliably computed in QCD by using the same factorization formula
 - But, all order proof in perturbation theory is lacking
 - Corrections: \((1/m_c)^2\)

- Usefulness:
 - Total quark cross section \(\rightarrow\) CEM

Collins, Soper and Sterman:
Nucl. Phys. B263, 37, 1986
Quarkonium production in cold medium

- Medium size and X_F dependence of suppression:

$$\sigma_A \equiv \sigma_N A^{\alpha}$$

$\sigma_{\text{abs}} = 4.18 \pm 0.35 \text{ mb}$

NA38/NA50

Leitch, ECT*
Quarkonium production in sQGP

Suppression in A-A collisions:

![Graph showing suppression in A-A collisions with different datasets and error bars.](image)

Leitch, ECT*

Jianwei Qiu, ISU
Transverse momentum distribution

- **Multiple scattering in medium:**
 - Each scattering is too soft to calculate perturbatively
 - Resummation + multiple scattering (not yet achieved)

- **Moment of P_T-distribution:**
 - More inclusive – calculable
 - Based on observed particles only
 - Less sensitive to hadronization

- **Broadening:**
 - Sensitive to the medium properties
 - Perturbatively calculable

\[
\langle (q_T^2)^n \rangle = \frac{\int dq_T^2 (q_T^2)^n \frac{d\sigma}{dq_T^2}}{\int dq_T^2 \frac{d\sigma}{dq_T^2}}
\]

\[
\Delta \langle q_T^2 \rangle = \langle q_T^2 \rangle_{AB} - \langle q_T^2 \rangle_{NN}
\]
Pure initial-state multiple scattering

- **Drell-Yan in d+A collision:**

 \[\Delta \langle q_T^2 \rangle_{\text{DY}} \approx C_F \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right) \]

 \[\Delta \langle q_T^2 \rangle_{E772} \approx 0.027 A^{1/3} \]

 Theory and Experiment are consistent, clear \(A^{1/3} \) dependence

- **Drell-Yan (W/Z at the LHC) in d+A and A+A collision:**

 - If the medium was formed after the hard collision,
 - multiple scattering in cold nuclear matter
 - broadening in AA = superposition of pA

 \[\Delta \langle q_T^2 \rangle_{dA} \approx C_F \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2(Q) A^{1/3} \right) \]

 \[\Delta \langle q_T^2 \rangle_{AB} \approx C_F \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2(Q)[A^{1/3} + B^{1/3}] \right) \]

 - If the medium (its coherence) was formed before hard collision,
 fast parton in hot dense medium – thermal energy

 \[\Delta \langle q_T^2 \rangle_{AA} \quad \text{Saturates as a function of the centrality} – \text{model needed} \]
Broadening of heavy quarkonia

- **Initial-state only:**
 \[
 \Delta \langle q_T^2 \rangle_{J/\psi}^{(I)} = C_A \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right)
 \]
 \[
 \Delta \langle q_T^2 \rangle_{DY} \approx C_F \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right)
 \]

- **Experimental data from d+A:**
 - Clear $A^{1/3}$ dependence
 - But, wrong normalization!
 \[
 \frac{\Delta \langle q_T^2 \rangle_{J/\psi}^{(I)}}{\Delta \langle q_T^2 \rangle_{DY}} \bigg|_{thy} = \frac{C_A}{C_F} = 2.25
 \]
 \[
 \frac{\Delta \langle q_T^2 \rangle_{J/\psi}^{(I)}}{\Delta \langle q_T^2 \rangle_{DY}} \bigg|_{exp} = \frac{0.133}{0.027} \approx 4.9
 \]
 - Final-state effect?
 - Only depend on observed quarkonia

Kang, Qiu, PRD77(2008)

J.C.Peng, hep-ph/9912371

June 22, 2009

Jianwei Qiu, ISU
Final-state multiple scattering

- Heavy quarkonium is unlikely to be formed when the heavy quark pair was produced

$$r_H \leq \frac{1}{2m_c} \sim \frac{1}{15} \text{fm}$$

- If the formation length: $$r_F \leq R_N \sim 1 \text{fm}$$
 no A-enhancement from final-state interaction
- If the formation length: $$r_F \geq R_A$$
 additional A$^{1/3}$ enhancement from the final-state interaction

- Final-state effect depends on how quarkonium is formed
 NRQCD model, color evaporation model, ...
Double scattering – $A^{1/3}$ dependence:

$$\Delta \langle q_T^2 \rangle_{\text{CEM}} \approx \int dq_T^2 dq_T^2 \int_{4m_Q^2}^{4M_Q^2} dQ^2 \frac{d\sigma_{hA \rightarrow Q\bar{Q}}^D}{dQ^2 dq_T^2} \Big/ \int_{4m_Q^2}^{4M_Q^2} dQ^2 \frac{d\sigma_{hA \rightarrow Q\bar{Q}}}{dQ^2}$$

Multiparton correlation:

$$T^{(F)}_{g/A}(x) = T^{(l)}_{g/A}(x) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \int \frac{dy_1^- dy_2^-}{2\pi} \theta(y^- - y_1^-)\theta(-y_2^-) \times \frac{1}{xp^+} \langle p_A | F^+(y_2^-)F^+(0)F^+ \sigma(y^-)F^{+\alpha}(y_1^-) | p_A \rangle = \lambda^2 A^{4/3} \phi_{g/A}(x)$$

Broadening – twice of initial-state effect:

$$\Delta \langle q_T^2 \rangle_{\text{CEM}} = \left(\frac{8\pi^2\alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right) \left(C_F + C_A \right) \sigma_{q\bar{q}} + 2C_A \sigma_{gg}$$

\[\approx 2C_A \left(\frac{8\pi^2\alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right) \quad \text{if gluon-gluon dominates, and if } r_F > R_A \]
NRQCD model

- **Cross section:**
\[
\sigma^{NRQCD}_{hA \rightarrow H} = A \sum_{a,b} \int dx' \phi_{a/h}(x') \int dx \phi_{b/A}(x) \left[\sum_n H_{ab \rightarrow Q\bar{q}[n]} \langle \mathcal{O}^H(n) \rangle \right]
\]

- **Broadening:**
\[
\Delta\langle q_T^2 \rangle_{HQ}^{NRQCD} = \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right) \frac{(C_F + C_A)\sigma_{q\bar{q}}^{(0)} + 2C_A\sigma_{gg}^{(0)} + \sigma_{q\bar{q}}^{(1)}}{\sigma_{q\bar{q}}^{(0)} + \sigma_{gg}^{(0)}}
\]

Hard parts:
\[
\hat{\sigma}_{q\bar{q}}^{(0)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{16}{27} \delta(\hat{s} - M^2) \langle \mathcal{O}^H(3S_1^{(8)}) \rangle
\]
\[
\hat{\sigma}_{q\bar{q}}^{(1)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{80}{27} \delta(\hat{s} - M^2) \langle \mathcal{O}^H(3P_0^{(8)}) \rangle
\]
\[
\hat{\sigma}_{gg}^{(0)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{5}{12} \delta(\hat{s} - M^2) \left[\langle \mathcal{O}^H(1S_0^{(8)}) \rangle + \frac{7}{m_Q^2} \langle \mathcal{O}^H(3P_0^{(8)}) \rangle \right]
\]

- **Leading features:**
\[
\Delta\langle q_T^2 \rangle_{HQ}^{NRQCD} \approx \Delta\langle q_T^2 \rangle_{HQ}^{CEM} \approx (2C_A/C_F)\Delta\langle q_T^2 \rangle_{DY}
\]
Broadening of heavy quarkonia in d+A

- Final-state effect is important:
 \[\frac{\Delta \langle q_T^2 \rangle_{J/\psi}^{(I+F)}}{\Delta \langle q_T^2 \rangle_{DY}} \bigg|_{thy} \approx 2C_A/C_F = 4.5 \]

- Mass – independence, not very sensitive to the feeddown
Broadening of quarkonia in A+A

- If no hot medium was formed:
 - broadening in AA = superposition of pA
 - $\Delta \langle p_T^2 \rangle_{AA} \propto L_{eff}$

- If hot medium is formed:
 - $\Delta \langle p_T^2 \rangle_{final} \sim 0$
 - $\Delta \langle p_T^2 \rangle_{initial} \lesssim$ superposition of $\Delta \langle p_T^2 \rangle_{pA}$

Some kind of slow moving medium was produced at RHIC! $\Delta \langle q_T^2 \rangle_{AA}$ could be as small as 0!

final-state energy loss, initial-state thermal medium?
Summary and outlook

- Heavy quarkonium provides a “non-relativistic” system, and could offer some important perspectives to the formation of QCD bound states.
- Heavy quarkonium has two intrinsic scales, and could be a good probe of QGP or other dense medium.
- But, after 30 years, since the discovery of J/ψ, we still have not been able to fully understand the production mechanism of heavy quarkonia.
- None of the factorized production models, including NRQCD model, were proved theoretically.
- RHIC is offering an excellent opportunity to learn and examine the formation of QCD bound states – nuclear matter could be an effective filter to distinguish the production models.
Backup slices
Works for other states too:

\[\text{E. Braaten et al. Annu. Rev. Nucl. Part. Sci. 46, 197 (1996)} \]
Same problem for other states:

CDF Collaboration, PRL 2007

Braaton & Lee, PRD63, 071501 (2001)
LEP data on J/ψ photo-production: $\gamma\gamma \rightarrow J/\psi + X$
Kinematically preferred configuration:

Production rate of a singlet charm quark pair is dominated by the phase space where $s_3=(P_1+P_2+P_3)^2$ or $s_4=(P_1+P_2+P_4)^2$ near its minimum.

NRQCD formalism does not apply when there are more than one heavy quark velocity involved.

Color transfer enhances associated heavy quarkonium production.

A heavy quark as a color source to enhance the transition rate for an octet pair to become a singlet pair.

Nayak, Qiu, Sterman, PRL 2007