Critical Behavior of heavy quarkonia in medium from QCD sum rules

Kenji Morita

Institute of Physics and Applied Physics,
Yonsei University

in Collaboration with
Su Houng Lee
Aim of this talk:

1. **Practical procedure of QCDSR calculation**
 1. For introduction: → S.H. Lee’s talk
 2. Borel transformation technique
 3. How to extract spectral properties

2. **Temperature dependence of spectral parameters**
 1. Change across the phase transition: how change of gluon condensates converts into quarkonia?

3. **Construction of the imaginary time correlator**
 1. Reconstructed spectral function
 2. Imaginary time correlator
 3. Comparison with lattice QCD results
Joint CATHIE-INT mini-program Quarkonium in Hot Media: from QCD to Experiment
QCD Sum Rules for Heavy Quarkonium

- **Current-current correlation function**

\[
\Pi^J(q^2) = i \int d^4x e^{iqx} \langle T[j^J(x)j^J(0)] \rangle \quad j^P = i\bar{c}\gamma_5 c, \quad j^V = \bar{c}\gamma_\mu c
\]

\[
\Pi^{P,S}(q^2) = q^2\tilde{\Pi}^J(q^2)
\]

\[
\Pi^{V,A}_{\mu\nu}(q^2) = (q_\mu q_\nu - q^2 g_{\mu\nu})\tilde{\Pi}^J(q^2)
\]

- **Take spacelike momentum**: \(q^2 = -Q^2 < 0 \)

\(\tilde{\Pi} = \tilde{\Pi}^R \)

- **OPE and truncation valid for**:

\(4m_Q^2 + Q^2 > (\Lambda_{QCD} + aT)^2 \)

- **Temperature effect only through condensates**

- **Meson at rest with respect to medium**: \(q = (\omega,0) \)

- **Longitudinal and transverse polarizations are no longer independent**
Gluon condensates

Smotherer but same amount of change in Full QCD

Full QCD: Cheng et al., ‘08
Borel Transformation in QCDSR

Physical meaning

- Large Q^2 limit + Probing resonance (large n)
- Suppression of high energy part of $\rho(s)$

$$
\mathcal{M}(M^2) = \lim_{Q^2/n \to M^2, \quad n, Q^2 \to \infty} \frac{(Q^2)^{n+1} \pi}{n! \left(-\frac{d}{dQ^2} \right)^n} \Pi(Q^2)
$$

$$
= \int_{4m_Q^2}^{\infty} ds e^{-s/M^2} \text{Im}\Pi(s) \quad \leftrightarrow \quad \text{Dispersion relation}
$$

$$
\rho^{\text{ph}}(s) = \frac{1}{\pi} \frac{f \Gamma \sqrt{s}}{(s - m^2)^2 + s \Gamma^2} + \frac{1}{\pi} \text{Im}\Pi^{\text{pert}}(s) \theta(s - s_0)
$$

$$
- \frac{1}{\partial(1/M^2)} \left[\mathcal{M}(M^2) - \mathcal{M}^{\text{cont}}(M^2) \right] = \frac{\int_{4m_Q^2}^{\infty} ds \ s e^{-s/M^2} \rho^{\text{pole}}(s)}{\int_{4m_Q^2}^{\infty} ds e^{-s/M^2} \rho^{\text{pole}}(s)}
$$

$$
(= m^2 \quad \text{if} \quad \rho^{\text{pole}}(s) = f \delta(s - m^2))
$$
OPE side : temperature dependence

\[
\mathcal{M}(M^2) = e^{-4m_Q^2/M^2} \pi A(M^2) \left[1 + \alpha_s(M^2)a(M^2) + \phi_b b(M^2) + \phi_c c(M^2) \right]
\]

- **Behavior of each OPE terms**
 - **Scalar** \((b\phi_b)\)
 - Negative at low \(T\)
 - \(G_0 > 0\)
 - \(b < 0\)
 - Increase with \(T\)
 - **Twist-2** \((c\phi_c)\)
 - Always positive
 - Increase with \(T\)

- **Parameter**
 - \(\alpha_s(8m_c^2) = 0.21\),
 - \(m_c(p^2 = -m_c^2) = 1.26\text{GeV}\),
 - \(G_0^{\text{vac}} = (0.35 \text{ GeV})^4\)
Sum rule constraints

From the OPE...

$$\text{OPE} = \int ds \, e^{-s/M^2}$$

If other quantities are fixed:
- m^2: decrease
- Γ: Increase
- s_0: decrease
- f: Increase
Borel Window : where QCDSR works well

Borel Window : M^2 range such that...

- Criterion 1 – OPE convergence in the Window
 - Power correction is small enough
 \[
 \frac{\text{max(gluon condensates)}}{\text{total OPE}} \leq 0.3
 \]

- Criterion 2 – Pole should dominate
 \[
 \frac{M_{\text{cont}}(M^2)}{M(M^2)} < 0.3
 \]

- Criterion 3 – Mass should not depend on M^2, or must have local minimum/maximum
How to choose the best solution?

- Searching for \((m, \Gamma, s_0)\) giving the flattest Borel curve

\[
\chi^2 \equiv \frac{1}{M_{\text{max}}^2 - M_{\text{min}}^2} \int_{M_{\text{min}}^2}^{M_{\text{max}}^2} dM^2 (m^2(M^2) - m^2(M_0^2))^2
\]

\[
\left. \frac{d m(M^2)}{d M^2} \right|_{M^2 = M_0^2} = 0
\]

- Caveats

 - Solution is not unique!
 - Many combination can give similarly flat curve!
 - Need to fix either \(\Gamma\) or \(s_0\)

 - Changing \(s_0 \rightarrow M_{\text{max}}^2\) changes
 - This method seems to work only when either \(M_{\text{min}}^2\) or \(M_{\text{max}}^2\) is fixed
 - Useful for determine \(\Gamma\) and \(m\) at a fixed \(T\) and \(s_0\)
Systematics of Borel curve modification

\[M^2_{\text{min}}, M^2, M^2_{\text{max}} \]

- \(T=0, \Gamma=0, \) larger \(s_0 \)
- \(T=0, \Gamma=0, \) moderate \(s_0 \)
- \(T=0, \Gamma > 0, \) moderate \(s_0 \)

Favored
Systematics of Borel curve modification

- $T=0$, $\Gamma=0$, moderate s_0
- $T\sim T_c$, $\Gamma=0$, moderate s_0
- $T\sim T_c$, $\Gamma>0$, moderate s_0
- $T\sim T_c$, $\Gamma=0$, smaller s_0 (favored)
Systematics of Borel curve modification

Equations and Text:

1. \(T \sim T_c, \Gamma = 0, \text{moderate } s_0 \)
2. \(T > 1.05 T_c, \Gamma = 0, \text{moderate } s_0 \)
3. \(T > 1.05 T_c, \Gamma = 0, \text{smaller } s_0 \)
4. \(T > 1.05 T_c, \Gamma > 0, \text{moderate } s_0 \)

Graphical Representation:

- Minimum exists only if width or threshold changes.
- Beyond \(T_{\text{onset}} \), width is necessary for obtaining minimum.

Legend:

- \(M^2_{\text{min}} \) and \(M^2_{\text{max}} \) indicate minimum and maximum values.

Footnotes:

| Jun 18, 2009 | Joint CATHIE-INT mini-program Quarkonium in Hot Media: from QCD to Experiment | 13 |
Results for Charmonia
Results: S-wave states

η_c starts to broaden earlier?

$T_{\text{onset}} = 1.07T_c$

$T_{\text{onset}} = 1.04T_c$
Results: P-wave states

\[T_{\text{onset}} = 1.05T_c \]
Indication from the results

Constraints among m, Γ and s_0
- One needs to fix m or s_0 (not Γ)

Effect of temperature: as T increases,

<table>
<thead>
<tr>
<th>s_0</th>
<th>m</th>
<th>Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
<td>\Rightarrow ↑</td>
</tr>
<tr>
<td>\Rightarrow</td>
<td>↓ \Rightarrow ↑</td>
<td>↑</td>
</tr>
<tr>
<td>↑</td>
<td>\Rightarrow or ↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Mass should decrease around T_c
- 2nd order Stark effect (Lee-Morita PRD75)

Caveat:
- $T>T_{\text{onset}}$, higher dim. condensates will be important
Combined with 2nd Order Stark effect

ALL quantities change abruptly around T_c!!!
Combined with 2nd Order Stark effect

ALL quantities change abruptly around T_c!!!
Comparison with lattice QCD?

- MEM spectral density: too coarse, especially above T_c
 - Spectral modification from QCDSR: $O(100\text{MeV})$

- More accurate quantity: Imaginary time correlator
 \[G(\tau, T) = \int d^3x \langle J(\tau, x) j^\dagger(0) \rangle \]
 \[= D^>(-i\tau, T) \]

-Dispersion relation
 \[G(\tau, T) = \int_0^\infty d\omega \frac{\cosh \left[\omega \left(\tau - \frac{1}{2T} \right) \right]}{\sinh \left(\frac{\omega}{2T} \right)} \rho(\omega, T) \]

We can put the phenomenological side used in QCDSR.
Modeled spectral density

Parameters from the result combined with Stark effect
Imaginary time correlator: results

Looking at medium modification

\[\frac{G(\tau, T)}{G_{\text{rec}}(\tau, T)}, \quad G_{\text{rec}}(\tau, T) = \int_0^\infty d\omega \frac{\cosh \left[\omega \left(\tau - \frac{1}{2T} \right) \right]}{\sinh \left(\frac{\omega}{2T} \right)} \rho(\omega, T = 0) \]

J/\psi, T=0.87T_c=257 MeV

Deviation at \(\tau > 0.2 \text{fm} \)

Below \(T_c \): zero-mode contribution should be different

Lattice: Jakovac et al., PRD75,014506 ('07)
Imaginary time correlator: results

- **Looking at medium modification**

 \[
 \frac{G(\tau, T)}{G_{\text{rec}}(\tau, T)}, \quad G_{\text{rec}}(\tau, T) = \int_0^\infty d\omega \frac{\cosh [\omega (\tau - \frac{1}{2T})]}{\sinh (\frac{\omega}{2T})} \rho(\omega, T = 0)
 \]

- **J/ψ, T=0.87T_c=257 MeV**

 - Neglecting zero mode
 - Agree with lattice when continuum threshold does not change (no mass change in this case)
Imaginary time correlator: model study

- Varying only one parameter

![Graphs showing imaginary time correlator behavior under different parameters and normalizations.]

- Normalized at $s_0^{1/2} = 3.48$ GeV
- Normalized at $m = 2.993$ GeV
- Normalized at $\Gamma = 2$ MeV
- $\rho_{\text{peak}} = \frac{f_0 \Gamma}{m}$
- $f = 1.2$, $f = 1.1$, $f = 0.9$, $f = 0.8$
Imaginary time correlator: J/ψ above T_c

J/ψ, $T=1.07T_c=316$ MeV

Agreement in lower s_0 cases at $\tau < 0.2$

Zero mode contribution seems overestimated?
Imaginary time correlator: J/ψ above T_c

\[G(\tau, T)/G_{\text{rec}}(\tau, T) \]

- Lattice, $\beta=6.1$
- $s_0^{1/2}=3.7$ GeV
- $s_0^{1/2}=3.6$ GeV
- $s_0^{1/2}=3.5$ GeV
- $s_0^{1/2}=3.4$ GeV
- $s_0^{1/2}=3.3$ GeV
- $s_0^{1/2}=3.2$ GeV
- $s_0^{1/2}=3.1$ GeV
- $s_0^{1/2}=3.05$ GeV

- J/ψ, $T=1.07T_c=316$ MeV

Agreement in lower s_0 cases at $\tau < 0.2$

Zero mode contribution seems overestimated?

- $\sqrt{s_0} = 3.2$ GeV
- $\delta m = -120$ MeV
- $\Gamma = 64$ MeV

→ Also consistent with Stark effect

w/o zero mode, $G/G_{\text{rec}} \sim 1$ is possible with a mixture of pole and continuum modification
Imaginary time correlator: J/ψ above T_c

J/ψ, $T = 1.09T_c = 322$ MeV

Lattice data: finest spacing

Agreement becomes worse

Zero mode contribution seems overestimated?

Caveat: $T = 1.09T_c$ is above the onset of the width

Improvement needed

- Correct zero mode → More modification needed
- Check zero mode through χ states
Imaginary time correlator: J/ψ above T_c

- J/ψ, $T=1.09T_c=322$ MeV
- Lattice data: finest spacing
- Agreement becomes worse
- Zero mode contribution seems overestimated?
- Caveat: $T=1.09T_c$ is above the onset of the width
- Improvement needed

- Correct zero mode \rightarrow More modification needed
- Check zero mode through χ states
Imaginary time correlator: χ_c above T_c

- Zero mode contribution dominates
- Agree with lattice data but not sensitive to detailed spectral change
Imaginary time correlator: χ_c above T_c

- Zero mode contribution dominates; in free gas approximation, it increases as T increases.
- Larger than lattice: change from $1.07T_c$?
Imaginary time correlator: η_c above T_c

- No zero mode in PS channel
- Larger than lattice: different from J/ψ
Discussion

Too simple continuum?

- In QCDSR, continuum is well suppressed
- How about in the correlator?

\[G(\tau, T) = \int_0^\infty d\omega K(\tau, T) \rho(\omega) \]

\[\mathcal{M}(M^2) = 2 \int_0^\infty \frac{d\omega}{\omega} e^{-\omega^2/M^2} \rho(\omega) \]

ITC might be sensitive to what QCDSR is not.

Note: we have imposed all higher states effects on continuum threshold.

Explicit excited states (2s) will enhance \(G_{\text{rec}} \) in the model then reduce \(G/G_{\text{rec}} \)

Jun 18, 2009

Joint CATHIE-INT mini-program Quarkonium in Hot Media: from QCD to Experiment
Relative contribution from each $\rho_i(\omega)$

- In G_{rec}, temperature effect is small at $T=1.07 T_c$
- Continuum dominates the correlator
- Zero mode $< 20\%$ in V channel
Relative contribution from each $\rho_i(\omega)$

- In G_{rec}, temperature effect is small at $T=1.07T_c$
- Continuum dominates the correlator
- Zero mode contribution dominates at large τ
Relative contribution from each $\rho_i(\omega)$

- In G_{rec}, temperature effect is small at $T=1.07T_c$
- Continuum dominates the correlator at $\tau < 0.2\text{fm}$
- Zero mode dominates at $\tau > 0.25\text{fm}$
Results for Bottomonia:

- Condensates contribution to OPE is much smaller:
 \[(m_b/m_c)^4 \sim 100\]
- \(m_b = 4.15 \text{ GeV}, \ \alpha_s(8m_b^2)=0.12\)
- \(M_{\text{min}}^2: 5\% \text{ dim.4 contribution}\)
Spectral modification above T_c

$T_{\text{onset}} = 2.09 T_c$

$T_{\text{onset}} = 1.96 T_c$
Combined with 2nd order Stark effect

Both seem to exist at 2T_c
Spectral modification above T_c

$T_{\text{onset}} = 1.52T_c$

$T_{\text{onset}} = 1.46T_c$
Imaginary time correlator: Υ

- Agree with lattice data at $T=1.15T_c$: $\delta m = -25\text{MeV}$, $\Gamma=0$,
- Deviation at $T=1.54T_c$
Imaginary time correlator: η_b

- Agree with lattice data at $T=1.15T_c$: $\delta m = -18\text{MeV}$, $\Gamma=0$,
- Deviation at $T=1.54T_c$
Imaginary time correlator: χ_{b0}

- Agree with coarser lattice, not with finer one
- Deviation at $T=1.54T_c$
Summary and Outlook

- **QCDSR** gives constraints on the spectral modification
 - Instability of the Borel curve indicates onset of broadening
- **QCDSR**: translates change of condensates into pole
 - Charmonium: sudden changes across T_c
 - Bottomonium: moderate changes above T_c
- **G/G_{rec}**: more sensitive to continuum
 - QCDSR-constrained modification is not inconsistent with lattice G/G_{rec}
 - Decreasing threshold, mass, and overlap constant / Increasing width
 - Agreement might be accidental
 - For clarification, we need more realistic continuum model including excited states and thermal effects, which do NOT affect QCDSR
A trial...

- Including ψ' at $T=0$ (using exp. data from PDG)
 - QCDSR re-fit: only 0.3% change of mass and 10% increase of continuum threshold
 - Imaginary time correlator at $T=0$: 3% change

![Graphs showing the effect of ψ' on the correlator at $T=0$.]
Backup
OPE in the heavy quark systems

Truncation at the leading order

\[q^2 = I + G^2 \]

\[(G^n\text{term}) \sim \int_0^1 \frac{F(q^2, x)dx}{[m_h^2 - x(1-x)q^2]^n} \langle G^n \rangle \]

if \(4m_h^2 - q^2 \gg \Lambda_{QCD}^2 \), higher dimensional ones can be neglected

Introducing temperature (Hatsuda-Koike-Lee, ’93)

- Low enough / small change from vacuum value

\[4m_h^2 - q^2 \gg \Lambda_{QCD}^2, T^2 \]

Temperature dependence only through operators
Mathematical aspects (Bertlmann, '82)

- **Limit of hypergeometric function**

\[
F \left(n, b, n + c; \frac{\xi}{1 + \xi} \right) \to \frac{n^b}{\Gamma(c)} \int_0^\infty ds \frac{1}{s^c} \frac{1}{(\omega + s)^{-b}}
\]

\[
\equiv n^b G(b, c, \omega)
\]

- **Whittaker function**

Results

\[
\mathcal{M}(M^2) = e^{-\frac{4m_Q^2}{M^2}} \pi A(M^2) \left[1 + \alpha_s(M^2) a(M^2) + \phi_b b(M^2) + \phi_c c(M^2) \right]
\]

\[
\pi A^V(\omega) = \frac{3}{16\sqrt{\pi}} \frac{4m_h^2}{\omega} G \left(\frac{1}{2}, \frac{5}{2}, \omega \right)
\]

\[
a^V(\omega) = \frac{4}{3\sqrt{\pi} G \left(\frac{1}{2}, \frac{5}{2}, \omega \right)} \left[\pi - c_1 G(1, 2, \omega) + \frac{1}{3} c_2 G(2, 3, \omega) \right] - c_2 - \frac{4 \ln 2}{\pi} G \left(\frac{1}{2}, \frac{3}{2}, \omega \right)
\]

\[
b^V(\omega) = -\frac{\omega^2 G \left(-\frac{1}{2}, \frac{3}{2}, \omega \right)}{2 G \left(\frac{1}{2}, \frac{5}{2}, \omega \right)}
\]

\[
c^V(\omega) = b^V(\omega) - \frac{2}{3} \omega^3 G \left(\frac{3}{2}, \frac{3}{2}, \omega \right)
\]

\[
= b^V(\omega) - \frac{2}{3} \omega^3 G \left(\frac{3}{2}, \frac{3}{2}, \omega \right)
\]
QCD sum rules

\[\Pi(Q^2) = \int_0^\infty ds \frac{\rho(s)}{s + Q^2} \]

Hadronic spectral density (what we want to know)

OPE at large \(Q^2 \)

Matching to obtain \(m^2 \) and \(s_0 \)

\[\simeq C_{\text{pert}}(Q^2) + \sum_i C_{q_i\bar{q}_i} \langle m_i \bar{q}_i q_i \rangle + C_G \left\langle \frac{\alpha_s}{\pi} G_{\mu\nu} G^{\mu\nu} \right\rangle + \cdots \]

R.H.S is just a SUM of spectral density, but there are many ways to optimize it!
Gluon condensates in medium

- **Appearance of the twist-2 gluon operator**

\[
\begin{align*}
\langle \alpha_s G^2 \rangle & = C_G^0 \frac{\alpha_s}{\pi} G^2 \\
\frac{1}{q^2} \langle \alpha_s G^{\mu\alpha} G^{\nu\alpha} \rangle & = C_G^2 \frac{q^\mu q^\nu}{q^2} \left(\frac{\alpha_s}{\pi} G^{\mu\alpha} G^{\nu\alpha} \right)
\end{align*}
\]

- **Relation to thermodynamic quantities**

 - **Trace anomaly + traceless/symmetric term**

\[
\langle \frac{\alpha_s}{\pi} G^{\mu\alpha} G^{\nu\alpha} \rangle = \left(u_\mu u_\nu - \frac{1}{4} g_{\mu\nu} \right) G_2(T) + \frac{1}{4} g_{\mu\nu} G_0(T)
\]

 - **Energy-momentum tensor**

\[
\langle T^\mu_\mu \rangle = \left(\frac{\beta(g)}{2g} G^{\alpha\mu} G^{\mu\alpha} \right) = \varepsilon - 3p
\]

\[
T^{\mu\nu} = -G^{\alpha\mu\alpha} G^{\alpha\nu} = (\varepsilon + p) u^\mu u^\nu
\]
Temperature dependence from lattice QCD

\[G_0(T) = G_0^{\text{vac}} - \frac{8}{11}(\varepsilon - 3p), \quad G_2(T) = -\frac{\alpha_s(T)}{\pi}(\varepsilon + p) \]

- Rapid change around \(T_c \)
- \(G_2 \) quickly approaches to \(T^4 \)
- Max deviation from SB limit at \(1.1T_c \)

Gluon condensates / \(T^4 \)

\[\Delta G_0 / T^4 \quad \text{red} \]
\[G_2 / T^4 \quad \text{blue} \]

\(T/T_c \): 1, 1.5, 2, 2.5, 3

Lattice data: Boyd et al, NPB469,419 ('96)
Examples for χ^2 evaluation ($T=0$)
Examples for χ^2 evaluation ($T=1.0T_c$)
Examples for χ^2 evaluation ($T = 1.07 T_c$)
Imaginary time correlator: Υ

- Less continuum dominant than J/ψ
- T=1.15T_c is similar to T=0 when G/G_{rec}~1
Imaginary time correlator: η_b

- Agree with lattice data at $T=1.15T_c$: $\delta m = -18\text{MeV}$, $\Gamma=0$,
- Deviation at $T=1.54T_c$
Imaginary time correlator: χ_{b0}

- Agree with coarse lattice but with finer one
- Deviation at $T=1.54T_c$
Effect of zero-mode

- **Landau damping contributes the correlator**

 Assuming free thermal quarks in medium

 \[\rho^{scat}(\omega) = 3\omega \delta(\omega)(c_1 I_1 - c_2 I_2). \]

 \[G^{scat}(\tau, T) = 3T(c_1 I_1 - c_2 I_2). \]

 We use

 \[\rho^{QCD\text{SR}}(\omega, T) = \rho^{phen}(\omega^2) + \rho^{scat}(\omega) \]

 - **Caveat:** continuum part may be too simple!
 - We imposed all medium effects on the change of threshold

<table>
<thead>
<tr>
<th></th>
<th>(P)</th>
<th>(V(\rho^{\mu}))</th>
<th>(V(\rho^{\tau}))</th>
<th>(S)</th>
<th>(A(\rho^{\mu}))</th>
<th>(A(\rho^{\tau}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>(c_2)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
</tr>
</tbody>
</table>