Update* on J/ψ cold nuclear matter R_{AA} estimates from fits to dAu R_{CP} data

Tony Frawley

CATHIE – INT workshop
June 17, 2009

*Update of results presented in “Looking for the cold nuclear matter baseline for J/ψ production at RHIC” at the quarkonium workshop at ECT, Trento, May 2009.
Estimating the cold nuclear matter R_{AA} from fits to d+Au data

This is an extension of work (reported at the quarkonium workshop in Trento) to estimate the R_{AA} for heavy ions that would be expected from cold nuclear matter effects alone, using measured d+Au J/ψ data.

I will not describe the calculation details here, please see my Trento slides for those. Briefly, the $R_{AuAu}(CNM)$ calculations there were made by:

- Fitting PHENIX d+Au R_{CP} data with R_{dAu} vs impact parameter calculations by Ramona Vogt (σ_{breakup} + a shadowing model – EKS98, nDSG, or EPS08).
- Parameterizing the d+Au R_{CP} data independently at $y= -1.7, 0, +1.7$.
- Using the parameterizations in a Glauber calculation for Au+Au to calculate for each nucleon-nucleon collision the R_{dAu} for each colliding nucleon in its target nucleus.
- Accumulating $R_{AuAu}(CNM)$ vs centrality for 250,000 Glauber AuAu events.
- Dividing the measured R_{AA} by $R_{AA}(CNM)$ to get “survival probability”.

The effective absorption cross sections from fits of Ramona's calculations to PHENIX d+Au R_{CP} data are shown for each shadowing model.

This is **not** an attempt to extract physics from the d+Au R_{CP}! This is just a parameterization of the data that is independent at each rapidity.

The red points are the averages at $y = -1.7$ and $+1.7$.
The resulting “survival probability” for PHENIX data on J/ψ production in Au+Au collisions shown at the ECT in May was:

This is a brief **update** describing minor improvements to the estimates of R_{AA}(CNM) for Au+Au, and the addition of **new estimates for Cu+Cu**.
Changes since May

- The R_{AuAu} (CNM) calculation presented in May was made using theoretical R_{dAu} values vs impact parameter, instead of R_{pAu}, in the Glauber model.
- I have now replaced the R_{dAu} theory curves used to calculate R_{AA} (CNM) with new R_{pAu} calculations from Ramona. It turns out that the difference is significant for the most peripheral bins (only).
- I have added a calculation of R_{CuCu} (CNM) made using R_{pCu} calculations by Ramona.
Effect of using R_{pAu} instead of R_{dAu} in Glauber calculation

![Graph showing the ratio of R_{AA} to R_{AA} (CNM) against N_{part} with data points for AuAu at $y=0$ and $y=1.75$. EKS98 CNM baseline is indicated with narrow boxes for correlated systems and wide boxes for CNM baseline system.]
Effect of using R_{pAu} instead of R_{dAu} in Glauber calculation

![Graph showing the comparison of R_{AA} to $R_{AA(CNM)}$ for different N_{part} with EKS98 CNM baseline and correlated sys for Au$\text{Au} y=0$ and Au$\text{Au} y=1.75$. The narrow boxes represent correlated sys, and the wide boxes represent CNM baseline sys.](image)
The Cu+Cu calculations use the same breakup cross sections as those for Au+Au, namely the independent best fit cross sections at each rapidity from the d+Au R_{CP} data with EKS98, nDSg and EPS08 shadowing calculations of R_{dAu} by Ramona (see slide 4).

The $R_{CuCu}(CNM)$ calculations are identical to those for Au+Au with two exceptions:

- The Glauber calculation is for CuCu collisions.
- The shadowing model (EKS98, nDSg, EPS08) for CuCu is used.

We will start by looking at the $R_{AA}(CNM)$ values obtained for the three shadowing models for AuAu and CuCu.
$R_{AA}^{(CNM)}$ for Au+Au and Cu+Cu made with the EKS98 shadowing model and the d+Au best fit breakup cross sections.

Nice agreement of the Npart dependence!
$R_{AA}(\text{CNM})$ for Au+Au and Cu+Cu made with the EPS08 shadowing model and the d+Au best fit breakup cross sections.

Again, nice agreement of the N_{part} dependence.
$R_{AA}(\text{CNM})$ for Au+Au and Cu+Cu made with the nDSg shadowing model and the d+Au best fit breakup cross sections.

Different Npart dependence for Au+Au and Cu+Cu for the nDSg case! **Why?**
Ramona Vogt pointed me to slide 49 of her Trento presentation, showing the x dependence of various gluon shadowing parameterizations for J/ψ for different nuclear sizes.

Note the smooth behavior of the EKS98 and EPS08 parameterizations with nuclear size, and the non-smooth behavior for nDSg.

Given that the PHENIX Cu+Cu and Au+Au data show reasonable agreement for R_{AA} vs Npart, it seems to me that the nDSg result for Cu+Cu is unlikely, so I will not use it.

This makes clear that there is some model dependence in the $R_{CuCu}(CNM)$ estimates.
Results for “survival probability”

The $R_{AA}(CNM)$ values shown on slides 7 and 8, calculated with the EKS98 and EPS08 parameterizations of the $d+Au$ data, have been used to make plots of $R_{AA}/R_{AA}(CNM)$ for the published PHENIX J/ψ R_{AA} data:

Of course, calling it a “survival probability” implies a particular mechanism for J/ψ production that may not be correct or complete.

It is more accurate to think of $R_{AA}(CNM)$ as “folded pA” - an estimate of what we would see if there were no additional effects in AA collisions.

BUT: If the rapidity dependence of the effective absorption cross section in $d+Au$ is due to changes in charm pair production (as distinct from destruction of forming J/ψ), the $R_{AA}(CNM)$ reference will work as the baseline for any production mechanism – including statistical hadronization.
$R_{AA}/R_{AA}^{\text{(CNM)}}$ for Au+Au and Cu+Cu made with the EKS98 shadowing model and the d+Au best fit breakup cross sections.
\(\frac{R_{AA}}{R_{AA}} \) (CNM) for Au+Au and Cu+Cu made with the EPS08 shadowing model and the d+Au best fit breakup cross sections.
Aside

If a larger fraction of the ψ' and χ_c are destroyed by cold nuclear matter effects, which seems very likely, then the $R_{AA}/R_{AA}(\text{CNM})$ will not reflect the destruction of those mesons – they are already gone in our d+Au measurements.

We should try to quantify this at RHIC using our d+Au data.

My point is: be careful about looking for evidence of excited charmonia destruction in $R_{AA}/R_{AA}(\text{CNM})$.

→ in the limit where they were all destroyed in the initial collision, they would have no effect in $R_{AA}/R_{AA}(\text{CNM})$.
Summary and conclusions

The suppression beyond “folded pA” is very similar for y=0 and y=1.7, even though R_{AA} is quite different.

There is very little dependence of $R_{auAu}(\text{CNM})$ on the shadowing model used in the parameterization of d+Au. Not surprising, since the d+Au R_{CP} was fitted with a Au shadowing model.

But caution: There is significant model dependence of the calculated $R_{CuCu}(\text{CNM})$ when using a parameterization of d+Au data.

Even though the EKS98 and EPS08 $R_{CuCu}(\text{CNM})$ look reasonable next to the $R_{AuAu}(\text{CNM})$ it is important to remember that there is still some model dependence there – the data were fitted using a Au shadowing parameterization, not a Cu one, since we do not have d+Cu data.

I should stress that these are my conclusions - I am not speaking for PHENIX here.
Backup slides
The Npart dependence of Au+Au and Cu+Cu is consistent.

Note the smaller systematic uncertainties for the Cu+Cu data. This is primarily due to smaller uncertainties on N_{coll} from the Glauber calculation.

Thus the Cu+Cu data will be much better for studying the **onset** of hot nuclear matter effects.
The stronger Au+Au suppression at forward/backward rapidity has generated considerable interest.

But what is the expected suppression due to cold nuclear matter effects?