Production of a transverse ρ-meson at the twist-3 level

Lech Szymanowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
Ecole Polytechnique, CPhT, Palaiseau, France

in collaboration with
I. V. Anikin (JINR, Dubna), D. Yu. Ivanov (SIM, Novosibirsk), B. Pire (CPhT, Palaiseau) and S. Wallon (LPT, Orsay)

The Jefferson Laboratory Upgrade to 12 GeV (INT-09-3)
INT UW, Seattle, September 14 - November 20, 2009
Introduction: phenomenology of exclusive processes within **collinear factorization**

- Experimental tests are possible in **fixed target** experiments
 - $e^\pm p$, $\mu^\pm p$: HERA (HERMES), JLab, COMPASS...
- as well as in **colliders**, mainly for medium s
 - $e^\pm p$ colliders: HERA (H1, ZEUS)
 - e^+e^- colliders: LEP, Belle, BaBar, BEPC

Collinear factorization has been proven only for specific cases:
e.g.: ρ_T production cannot directly be factorized (appearance of **end point singularities**)
⇒ improvement needed for a consistent approach of exclusive processes
At the same time, at large s, the interest for phenomenological tests of hard Pomeron and related resummed approaches has become pretty wide:

- inclusive tests (total cross-section) and semi-inclusive tests (diffraction, forward jets, ...)
- exclusive tests (meson production)

These tests concern all type of collider experiments:

- $e^\pm p$: HERA: (H1, ZEUS)
- $p\bar{p}$ and pp: TEVATRON (CDF, D0); LHC (CMS, ATLAS, ALICE)
- e^+e^-: (LEP, ILC)

These high energy exclusive processes in the perturbative Regge limit may provide new ideas when dealing with collinear factorization.
Polarization effects in $\gamma^* P \to \rho P$ at HERA

- one can experimentally measure all spin density matrix elements

- at $t = t_{\text{min}}$ one can experimentally distinguish

 $$\left\{ \begin{array}{l}
 \gamma_L^* \to \rho_L : \text{ dominates (twist 2 dominance)} \\
 \gamma_T^* \to \rho_T : \text{ sizable (twist 3)}
 \end{array} \right.$$

- S-channel helicity conservation:

 $$\left\{ \begin{array}{c}
 \gamma_L^* \to \rho_L \quad (\equiv T_{00}) \\
 \gamma_T^* \to \rho_T,
 \end{array} \right.$$

 Dominate with respect to all other transitions. Experimentally, $\gamma_T^* \to \rho_T$ is dominated by $\gamma_T^*(-) \to \rho_T(-)$ and $\gamma_T^*(+)^+ \to \rho_T(+) \quad (\equiv T_{11})$
The processes with vector particle such as rho-meson probe deeper into the fine features of QCD.
It deserves theoretical development to describe HERA data in its special kinematical range:

- large $s_{\gamma^* P}$ \Rightarrow small-x effects expected, within k_t-factorization
- large Q^2 \Rightarrow hard scale \Rightarrow perturbative approach and collinear factorization
 \Rightarrow the ρ can be described through its chiral even Distribution Amplitudes

$$\left\{ \begin{array}{l} \rho_L \text{ twist 2} \\ \rho_T \text{ twist 3} \end{array} \right.$$

The main ingredient is the $\gamma^* \rightarrow \rho$ impact factor

SIMPLEST OBJECT: ONLY 1 SOFT PART

- For ρ_T, special care is needed: a pure 2-body description would violate gauge invariance.
- We show that:
 - Including in a consistent way all twist 3 contributions, i.e. 2-body and 3-body correlators, gives a gauge invariant impact factor
 - Our treatment is free of end-point singularities and does not violate the QCD factorization
QCD in perturbative Regge limit

- In this limit, the dynamics is dominated by gluons (dominance of spin 1 exchange in t channel)
- BFKL (and extensions: NLL, saturations effects, ...) is expected to dominate with respect to Born order at large relative rapidity.
Impact factor for exclusive processes

\(\gamma^* \gamma^* \rightarrow \rho \rho \) as an example

- Use Sudakov decomposition \(k = \alpha p_1 + \beta p_2 + k_\perp \) (\(p_1^2 = p_2^2 = 0, \ 2p_1 \cdot p_2 = s \))
- write \(d^4k = \frac{s}{2} d\alpha d\beta d^2k_\perp \)
- \(t \)-channel gluons with non-sense polarizations \((\epsilon^{up}_{NS} = \frac{2}{s} p_2, \ \epsilon^{down}_{NS} = \frac{2}{s} p_1) \)
 dominate at large \(s \)

⇒ set \(\alpha_k = 0 \) and \(\int d\beta \)

⇒ set \(\beta_k = 0 \) and \(\int d\alpha \)
Impact factor for exclusive processes

k_T factorization

impact representation \(\vec{k} = \text{Eucl.} \leftrightarrow \vec{k}_\perp = \text{Mink.} \)

\[
\mathcal{M} = is \int \frac{d^2 k}{(2\pi)^2 k^2 (r - k)^2} \Phi \gamma^*(q_1) \rightarrow \rho (p_1^\rho) (k, r - k) \ \Phi \gamma^*(q_2) \rightarrow \rho (p_2^\rho) (-k, -r + k)
\]

The \(\gamma_{L,T}^*(q) g(k_1) \rightarrow \rho_{L,T} g(k_2) \) impact factor is normalized as

\[
\Phi \gamma^* \rightarrow \rho (k_r^2) = e^{\gamma^* \mu} \frac{1}{2s} \int \frac{d\kappa}{2\pi} \text{Disc}_\kappa \mathcal{S}_{\mu}^{\gamma^* \rightarrow \rho} g(k_r^2),
\]

with \(\kappa = (q + k)^2 = \beta s - Q^2 - k^2 \)
Gauge invariance

- QCD gauge invariance (probes are colorless)
 \(\Rightarrow \) impact factor should vanish when \(k \to 0 \) or \(r - k \to 0 \)

- In the following we will restrict ourself to the case \(t = t_{min} \), i.e. to \(r = 0 \)

\[
\begin{align*}
k_1 &= \frac{\kappa + Q^2 + k^2}{s} p_2 + k_\perp \\
k_2 &= \frac{\kappa + k^2}{s} p_2 + k_\perp \\
k_1^2 &= k_2^2 = -k^2
\end{align*}
\]

This kinematics takes into account skewedness effects along \(p_2 \)

\(t = t_{min} \) \(\Rightarrow \) restriction to the transitions

\[
\begin{cases}
0 &\to 0 \quad \text{(twist 2)} \\
(\text{+ or -}) &\to (+ \text{ or -}) \quad \text{(twist 3)}
\end{cases}
\]

- At twist 3 level (for \(\gamma_T^* \to \rho_T \) transition), gauge invariance is a non trivial statement which requires 2 and 3 body correlators
The impact factor can be written as

\[\Phi = \int d^4l \cdots \text{tr}[H(l \cdots) \ S(l \cdots)] \]

\text{hard part} \quad \text{soft part}

At the 2-body level:

\[S_{q\bar{q}}(l) = \int d^4z \ e^{-il\cdot z} \langle \rho(p)|\psi(0)\bar{\psi}(z)|0\rangle, \]

\(H \) and \(S \) are related by \(\int d^4l \) and by the summation over spinor indices.
1 - Momentum factorization (1)

- Use Sudakov decomposition in the form ($p = p_1$, $n = 2p_2/s \Rightarrow p \cdot n = 1$)

\[l_\mu = yp_\mu + l_\mu^\perp + (l \cdot p) n_\mu, \quad y = l \cdot n \]

scaling: \[1 \quad 1/Q \quad 1/Q^2\]

- decompose $H(k)$ around the p direction:

\[H(l) = H(yp) + \frac{\partial H(l)}{\partial l_\alpha} \bigg|_{l=yp} (l - yp)_\alpha + \ldots \quad \text{with} \quad (l - yp)_\alpha \approx l_\alpha^\perp \]

- In Fourier space, the twist 3 term l_α^\perp turns into a derivative of the soft term

\Rightarrow one will deal with \[\int d^4z \ e^{-il \cdot z} \langle \rho(p) | \psi(0) i \partial_\alpha^\perp \bar{\psi}(z) | 0 \rangle \]
Collinear factorization
Light-Cone Collinear approach: 2 steps of factorization (2-body case)

1 - Momentum factorization (2)

- write

\[d^4 l \longrightarrow d^4 l \, \delta(y - l \cdot n) \, dy \]

- \(\int d^4 l \, \delta(y - l \cdot n) \) is then absorbed in the soft term:

\[
(\tilde{S}_{q\bar{q}}, \partial_{\perp} \tilde{S}_{q\bar{q}}) \equiv \int d^4 l \, \delta(y - l \cdot n) \int d^4 z \, e^{-il \cdot z} \langle \rho(p)|\psi(0) (1, \hat{i} \partial_{\perp})\bar{\psi}(z)|0\rangle
\]

\[
(\delta(y - l \cdot n) = \int \frac{d\lambda}{2\pi} e^{-i\lambda(y-l \cdot n)} \Rightarrow) = \int \frac{d\lambda}{2\pi} e^{-i\lambda y} \int d^4 z \, \delta^{(4)}(z - \lambda n) \langle \rho(p)|\psi(0) (1, \hat{i} \partial_{\perp})\bar{\psi}(z)|0\rangle
\]

\[
= \int \frac{d\lambda}{2\pi} e^{-i\lambda y} \langle \rho(p)|\psi(0) (1, \hat{i} \partial_{\perp})\bar{\psi}(\lambda n)|0\rangle
\]

- \(\int dy \) performs the longitudinal momentum factorization
2 - Spinorial (and color) factorization

- Use Fierz decomposition of the Dirac (and color) matrices $\psi(0)\bar{\psi}(z)$ and $\psi(0)i\partial_\perp\bar{\psi}(z)$:

- Φ has now the simple factorized form:

$$\Phi = \int dx \left\{ \text{tr} [H_{q\bar{q}}(x\, p) \, \Gamma] \, S_{q\bar{q}}^\Gamma(x) + \text{tr} [\partial_\perp H_{q\bar{q}}(x\, p) \, \Gamma] \, \partial_\perp S_{q\bar{q}}^\Gamma(x) \right\}$$

$$\Gamma = \gamma^\mu \text{ and } \gamma^\mu \gamma^5 \text{ matrices}$$

$$S_{q\bar{q}}^\Gamma(x) = \int \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle \rho(p) | \bar{\psi}(\lambda n) \, \Gamma \, \psi(0) | 0 \rangle$$

$$\partial_\perp S_{q\bar{q}}^\Gamma(x) = \int \frac{d\lambda}{2\pi} e^{-i\lambda x} \langle \rho(p) | \bar{\psi}(\lambda n) \, \Gamma \, i \quad \partial_\perp \psi(0) | 0 \rangle$$

- choose axial gauge condition for gluons, i.e. $n \cdot A = 0 \Rightarrow$ no Wilson line
Collinear factorization

Light-Cone Collinear approach: 2 steps of factorization (3-body case)

Factorization of 3-body contributions

- 3-body contributions start at genuine twist 3
 ⇒ no need for Taylor expansion

- Momentum factorization goes in the same way as for 2-body case

- Spinorial (and color) factorization is similar:
Collinear factorization
Parametrization of vacuum–to–rho-meson matrix elements (DAs): 2-body correlators

2-body non-local correlators

- vector correlator
 \[\langle \rho(p) | \bar{\psi}(z) \gamma_\mu \psi(0) | 0 \rangle \equiv m_\rho f_\rho \left[\varphi_1(y) (e^* \cdot n)p_\mu + \varphi_3(y) e_\mu^* T \right] \]

- axial correlator
 \[\langle \rho(p) | \bar{\psi}(z) \gamma_5 \gamma_\mu \psi(0) | 0 \rangle \equiv m_\rho f_\rho i \varphi_A(y) \epsilon_{\mu \lambda \beta \delta} e_\lambda^* T p_\beta n_\delta \]

- vector correlator with transverse derivative
 \[\langle \rho(p) | \bar{\psi}(z) \gamma_\mu i \partial_{\alpha}^\perp \psi(0) | 0 \rangle \equiv m_\rho f_\rho \varphi_1^T(y) p_\mu e_{\alpha}^* T \]

- axial correlator with transverse derivative
 \[\langle \rho(p) | \bar{\psi}(z) \gamma_5 \gamma_\mu i \partial_{\alpha}^\perp \psi(0) | 0 \rangle \equiv m_\rho f_\rho i \varphi_A^T(y) p_\mu \epsilon_{\alpha \lambda \beta \delta} e_\lambda^* T p_\beta n_\delta, \]

where \(y (\bar{y} \equiv 1 - y) = \) momentum fraction along \(p \equiv p_1 \) of the quark (antiquark) and

\[\bar{F} \equiv \int_0^1 dy \exp [i y p \cdot z], \text{ with } z = \lambda n \]

\Rightarrow 5 2-body DAs
Collinear factorization
Parametrization of vacuum–to–rho-meson matrix elements: 3-body correlators

3-body non-local correlators

- vector correlator

\[\langle \rho(p) | \bar{\psi}(z_1) \gamma_\mu g A^T_\alpha (z_2) \psi(0) |0 \rangle \overset{F_2}{=} m_\rho \, f^V_3 \, B(y_1, y_2) \, p_\mu \, e^{*T}_\alpha, \]

- axial correlator

\[\langle \rho(p) | \bar{\psi}(z_1) \gamma_5 \gamma_\mu g A^T_\alpha (z_2) \psi(0) |0 \rangle \overset{F_2}{=} m_\rho \, f^A_3 \, i \, D(y_1, y_2) \, p_\mu \, \varepsilon_\alpha \lambda \beta \delta \, e^{*T}_\lambda \, p_\beta \, n_\delta, \]

where \(y_1, \bar{y}_2, y_2 - y_1 = \) quark, antiquark, gluon momentum fraction

and \[\overset{F_2}{=} \int_0^1 dy_1 \int_0^1 dy_2 \, \exp \left[i \, y_1 \, p \cdot z_1 + i(y_2 - y_1) \, p \cdot z_2 \right], \] with \(z_{1,2} = \lambda n \)

\[\Rightarrow \] 2 3-body DAs
Collinear factorization
Symmetry properties

From C-conjugation on the previous correlators, one gets:

- **2-body correlators:**

 \[
 \varphi_1(y) = \varphi_1(1 - y) \\
 \varphi_3(y) = \varphi_3(1 - y) \\
 \varphi_A(y) = -\varphi_A(1 - y) \\
 \varphi^T_1(y) = -\varphi^T_1(1 - y) \\
 \varphi^T_A(y) = \varphi^T_A(1 - y)
 \]

- **3-body correlators:**

 \[
 B(y_1, y_2) = -B(1 - y_2, 1 - y_1) \\
 D(y_1, y_2) = D(1 - y_2, 1 - y_1)
 \]
Equations of motion

- **Dirac equation** leads to

\[\langle i(\not{D}(0)\psi(0))_\alpha \bar{\psi}_\beta(z) \rangle = 0 \quad (i \not{D}_\mu = i \not{\partial}_\mu + A_\mu) \]

- Apply the Fierz decomposition to the above 2 and 3-body correlators

\[- \langle \psi(x) \bar{\psi}(z) \rangle = \frac{1}{4} \langle \bar{\psi}(z) \gamma_\mu \psi(x) \rangle \gamma_\mu + \frac{1}{4} \langle \bar{\psi}(z) \gamma_5 \gamma_\mu \psi(x) \rangle \gamma_\mu \gamma_5.\]

- \[\Rightarrow 2 \text{ Equations of motion:} \]

\[\bar{y}_1 \varphi_3(y_1) + \bar{y}_1 \varphi_A(y_1) + \varphi_T(y_1) + \varphi_T^A(y_1) \]

\[+ \int dy_2 \left[\zeta V(y_1, y_2) + \zeta A^D(y_1, y_2) \right] = 0 \quad \text{and} \quad (\bar{y}_1 \leftrightarrow y_1) \]

- In **WW approximation**: genuine twist 3 = 0 i.e. \(B = D = 0 \)

\[
\begin{cases}
\varphi_T^A(y) = \frac{1}{2} [(y - \bar{y}) \varphi_A^{WW}(y) - \varphi_3^{WW}(y)] \\
\varphi_T^1(y) = \frac{1}{2} [(y - \bar{y}) \varphi_3^{WW}(y) - \varphi_A^{WW}(y)]
\end{cases}
\]
A minimal set of DAs

- The non-perturbative correlators cannot be obtained from perturbative QCD (!)
- one should reduce them to a minimal set before using any model
- this can be achieved by using an additional condition:

 independency of the full amplitude with respect to the light-cone direction \(n \)

\[\Rightarrow \text{we prove that 3 independent Distribution Amplitudes are needed:} \]

\[\phi_1(y) \quad \leftarrow \quad 2 \text{ body twist 2 correlator} \]

\[B(y_1, y_2) \quad \leftarrow \quad 3 \text{ body genuine twist 3 vector correlator} \]

\[D(y_1, y_2) \quad \leftarrow \quad 3 \text{ body genuine twist 3 axial correlator} \]
Collinear factorization

n-independence

n-independence in practice

- n^μ, with $n^2 = 0$, $n \cdot p = 1$ is not fixed uniquely
 \[
n^\mu \rightarrow n'\mu = n^\mu + \frac{n^2}{2} p^\mu + n^T_T
 \]

- ρ_T polarization: $e^{* T}_\mu = e^*_\mu - p_\mu e^* \cdot n$
 for the full factorized amplitude:
 \[
 A = H \otimes S \quad \frac{dA}{dn^\mu} = 0, \quad \text{where} \quad \frac{d}{dn^\mu} = \frac{\partial}{\partial n^\mu} + e^*_\mu \frac{\partial}{\partial (e^* \cdot n)}
 \]

- rewrite hard terms in one single form, of 2-body type: use Ward identities
 Example: hard 3-body \rightarrow hard 2-body

 \[
 \text{tr} \left[H_{3\rho}(y_1, y_2) \right] \ p^\rho \ \vec{p} \ B(y_1, y_2) = \frac{1}{y_1 - y_2} \ (\text{tr} \left[H_{2}(y_1) \right] \ p - \text{tr} \left[H_{2}(y_2) \right] \ p) B(y_1, y_2),
 \]

 \[
 \frac{dS}{dn^\mu} = 0
 \]

 \[
 y_1 - y_2
 \]

 \[
 \frac{1}{y_1 - y_2}
 \]
Collinear factorization
n–independence

Constraints from **n**–**independence**

- **vector correlators**

 \[
 \frac{d}{dy_1} \varphi^T_1(y_1) = -\varphi_1(y_1) + \varphi_3(y_1)
 \]

 \[-\zeta_3 V \int_0^1 \frac{dy_2}{y_2 - y_1} \left(B(y_1, y_2) + B(y_2, y_1) \right) \]

- **axial correlators**

 \[
 \frac{d}{dy_1} \varphi^T_A(y_1) = \varphi_A(y_1) - \zeta_3 A \int_0^1 \frac{dy_2}{y_2 - y_1} \left(D(y_1, y_2) + D(y_2, y_1) \right) \]
\[- \int_0^1 dy_1 \int_0^1 dy_2 B(y_1, y_2) \times p_\mu \left[\begin{array}{c}
\mu \\
y_2 - y_1 \\
y_2 - 1 \\
y_1 \end{array} \right] + \begin{array}{c}
\mu \\
y_2 - y_1 \\
y_2 - 1 \\
y_1 \end{array} + \begin{array}{c}
\mu \\
y_2 - y_1 \\
y_2 - 1 \\
y_1 \end{array} + \begin{array}{c}
\mu \\
y_2 - y_1 \\
y_2 - 1 \\
y_1 \end{array} + \begin{array}{c}
\mu \\
y_2 - y_1 \\
y_2 - 1 \\
y_1 \end{array}
\right] \]

\[
\times \left\{ \begin{array}{c}
\mu \\
y_2 - y_1 \\
y_2 - 1 \\
y_1 \end{array} \right\} - (y_1 \leftrightarrow y_2)
\]

\[
= \int_0^1 dy_1 \int_0^1 dy_2 \frac{B(y_1, y_2)}{y_2 - y_1} \times \left[\begin{array}{c}
\mu \\
y_2 - y_1 \\
y_2 - 1 \\
y_1 \end{array} \right] - (y_1 \leftrightarrow y_2)
\]

\[
= \int_0^1 dy_1 \int_0^1 dy_2 \frac{dy_2}{y_2 - y_1} \left[B(y_1, y_2) + B(y_2, y_1) \right] \times \left[\begin{array}{c}
\mu \\
y_2 - y_1 \\
y_2 - 1 \\
y_1 \end{array} \right]
\]

\[
(43)
\]
\[- \int_0^1 dy_1 \int_0^1 dy_2 \delta(y_1 - y_2) \varphi_T(y_1) \varphi_1(y_1) \times p_\mu \]

\[= \int_0^1 dy_1 \int_0^1 dy_2 \delta(y_1 - y_2) \varphi_T(y_1) \frac{\varphi_1(y_1)}{y_2 - y_1} \times \left\{ \begin{array}{c}
\end{array} \right\} - (y_1 \leftrightarrow y_2) \]
Collinear factorization
A set of independent non-perturbative correlators

Solution

- the set of 4 equations (2 EOM + 2 \(n \)-independence relations) can be solved analytically
- \(7 \rightarrow 3 \) independent DAs

twist 2
- kinematical twist 3 (WW)
- genuine twist 3
- genuine + kinematical twist 3
Wandzura-Wilczek

\[\varphi(y) = \varphi^{WW}(y) + \varphi^{gen}(y), \quad \varphi(y) = \varphi_3(y), \varphi_A(y), \varphi_1^T(y), \varphi_A^T(y) \]

where \(\varphi^{WW}(y) \) and \(\varphi^{gen}(y) \) are contributions in the so called Wandzura-Wilczek approximation and the genuine twist-3 contributions.

\(WW = \) vanishing 3-parton distributions \(B(y_1, y_2) \) and \(D(y_1, y_2) \), i.e. which satisfy the equations

\[\bar{y}_1 \varphi^3_{WW}(y_1) + \bar{y}_1 \varphi_A^WW(y_1) + \varphi_1^T_{WW}(y_1) + \varphi_A^T_{WW}(y_1) = 0 \]
\[y_1 \varphi^3_{WW}(y_1) - y_1 \varphi_A^WW(y_1) - \varphi_1^T_{WW}(y_1) + \varphi_A^T_{WW}(y_1) = 0. \]

\[
\frac{d}{dy_1} \varphi_1^T_{WW}(y_1) = -\varphi_1(y_1) + \varphi^3_{WW}(y_1), \quad \frac{d}{dy_1} \varphi_A^T_{WW}(y_1) = \varphi_A^WW(y_1).
\]

Solutions:

\[\varphi_A^{WW}(y_1) = \frac{1}{2} \left[\int_0^{y_1} \frac{dv}{v} \varphi_1(v) - \int_{y_1}^{1} \frac{dv}{v} \varphi_1(v) \right] \]
\[\varphi_3^{WW}(y_1) = \frac{1}{2} \left[\int_0^{y_1} \frac{dv}{v} \varphi_1(v) + \int_{y_1}^{1} \frac{dv}{v} \varphi_1(v) \right] \]

From these expr. the remaining \(\varphi_A^{WW T} \) and \(\varphi_1^{WW T} \) are

\[\varphi_A^{WW T}(y_1) = \frac{1}{2} \left[-\bar{y}_1 \int_0^{y_1} \frac{dv}{v} \varphi_1(v) - y_1 \int_{y_1}^{1} \frac{dv}{v} \varphi_1(v) \right] \]
\[\varphi_1^{WW T}(y_1) = \frac{1}{2} \left[-\bar{y}_1 \int_0^{y_1} \frac{dv}{v} \varphi_1(v) + y_1 \int_{y_1}^{1} \frac{dv}{v} \varphi_1(v) \right]. \]
Genuine twist-3

\[\bar{y}_1 \varphi_{3}^{\text{gen}}(y_1) + \bar{y}_1 \varphi_{A}^{\text{gen}}(y_1) + \varphi_{1}^{T \text{gen}}(y_1) + \varphi_{A}^{T \text{gen}}(y_1) \]

\[= - \int_{0}^{1} dy_2 \left[\zeta_{3}^{V} B(y_1, y_2) + \zeta_{3}^{A} D(y_1, y_2) \right] \]

\[y_1 \varphi_{3}^{\text{gen}}(y_1) - y_1 \varphi_{A}^{\text{gen}}(y_1) - \varphi_{1}^{T \text{gen}}(y_1) + \varphi_{A}^{T \text{gen}}(y_1) \]

\[= - \int_{0}^{1} dy_2 \left[-\zeta_{3}^{V} B(y_2, y_1) + \zeta_{3}^{A} D(y_2, y_1) \right] . \]

\[\frac{d}{dy_1} \varphi_{1}^{T \text{gen}}(y_1) = \varphi_{3}^{\text{gen}}(y_1) - \zeta_{3}^{V} \int_{0}^{1} \frac{dy_2}{y_2 - y_1} (B(y_1, y_2) + B(y_2, y_1)) , \]

\[\frac{d}{dy_1} \varphi_{A}^{T \text{gen}}(y_1) = \varphi_{A}^{\text{gen}}(y_1) - \zeta_{3}^{A} \int_{0}^{1} \frac{dy_2}{y_2 - y_1} (D(y_1, y_2) + D(y_2, y_1)) . \]
Solution for genuine twist-3

\[\varphi_{3 \, gen}^Y(y) = \]

\[-\frac{1}{2} \int_{y}^{1} \frac{du}{u} \left[\int_{0}^{u} dy_2 \frac{d}{du} (\zeta_3^V B - \zeta_3^A D)(y_2, u) \right. \]

\[- \left. \int_{0}^{u} \frac{dy_2}{y_2 - u} (\zeta_3^V B - \zeta_3^A D)(y_2, u) \right] \]

\[- \frac{1}{2} \int_{0}^{y_1} \frac{du}{u} \left[\int_{u}^{1} dy_2 \frac{d}{du} (\zeta_3^V B + \zeta_3^A D)(u, y_2) \right. \]

\[- \left. \int_{u}^{1} \frac{dy_2}{y_2 - u} (\zeta_3^V B + \zeta_3^A D)(u, y_2) \right] \]

Finally, the solution for \(\varphi_{1 \, gen}^Y \)

\[\varphi_{1 \, gen}^Y(y) = \int_{0}^{y} du \varphi_{3 \, gen}^Y(u) - \zeta_3^V \int_{0}^{y} dy_1 \int_{0}^{1} dy_2 \frac{B(y_1, y_2)}{y_2 - y_1} . \]
Computation and results

Computation of the hard part

2-body diagrams

- without derivative

- practical trick for computing $\partial_{\perp} H$: use the Ward identity

\[
\frac{\partial}{p_\mu} \rightarrow = \rightarrow \bullet \rightarrow
\]

where

\[
\rightarrow = \frac{1}{m - \not{p} - i\epsilon}
\]
3-body diagrams

- "abelian" type

- "non-abelian" type
Computation and results

Recall: $\gamma^*_L \rightarrow \rho_L$ impact factor

$$\Phi^{\gamma^*_L \rightarrow \rho_L}(k^2) = \frac{2e}{Q} \frac{g^2}{f_{\rho}} \frac{\delta^{ab}}{2N_c} \int dy \varphi_1(y) \frac{k^2}{y \bar{y} Q^2 + k^2}$$

pure twist 2 scaling (from ρ-factorization point of view)
Computation and results
Results: $\gamma_T^* \rightarrow \rho_T$ impact factor

$\gamma_T^* \rightarrow \rho_T$ impact factor:

Spin Non-Flip/Flip separation appears

$$\Phi_{\gamma_T^* \rightarrow \rho_T} (k^2) = \Phi_{n.f.} (k^2) T_{n.f.} + \Phi_{f.} (k^2) T_f.$$

where

$$T_{n.f.} = -(e_\gamma \cdot e^*)$$ and

$$T_f = \frac{(e_\gamma \cdot k)(e^*k)}{k^2} + \frac{(e_\gamma \cdot e^*)}{2}$$

non-flip transitions $\{ + \rightarrow + , - \rightarrow - \}$

flip transitions $\{ + \rightarrow - , - \rightarrow + \}$
Computation and results

Results: $\gamma_T^* \rightarrow \rho_T$ impact factor

pure twist 3 scaling (from ρ-factorization point of view)

$$\Phi_{n.f.}^{\gamma_T^* \rightarrow \rho_T} (k^2) = \frac{e g^2 m_\rho f_\rho}{2 \sqrt{2} Q^2} \frac{\delta^{ab}}{2 N_c} \left\{ -2 \int dy_1 \frac{(k^2 + 2 Q^2 y_1 (1 - y_1)) k^2}{y_1 (1 - y_1) (k^2 + Q^2 y_1 (1 - y_1))^2} \left[(2y_1 - 1) \varphi^T_1(y_1) + \varphi^T_A(y_1) \right]
+ 2 \int dy_1 \, dy_2 \left[\zeta^V_3 B(y_1, y_2) - \zeta^A_3 D(y_1, y_2) \right] \frac{y_1 (1 - y_1) k^2}{k^2 + Q^2 y_1 (1 - y_1)} \left[\frac{2 - N_c/C_F) Q^2}{k^2 (y_1 - y_2 + 1) + Q^2 y_1 (1 - y_2)} \right]
- \frac{N_c}{C_F} \frac{Q^2}{y_2 k^2 + Q^2 y_1 (y_2 - y_1)} \left[\frac{y_1 Q^2}{k^2 + Q^2 y_1 (1 - y_1)} \left(\frac{(2 - N_c/C_F) y_1 k^2}{k^2 (y_1 - y_2 + 1) + Q^2 y_1 (1 - y_2)} - 2 \right) \right]
+ \frac{N_c (y_1 - y_2) (1 - y_2)}{C_F (1 - y_1)} \frac{Q^2}{k^2 (1 - y_1) + Q^2 (y_2 - y_1) (1 - y_2)} \right\} \right.$$
Computation and results

Results: $\gamma_T^* \rightarrow \rho_T$ impact factor

WW limit

- **WW limit:** keep only twist 2 + kinematical twist 3 terms (i.e. $B = D = 0$)

- The only remaining contributions come from the two-body correlators

- **non-flip** transition

\[
\Phi_{n.f.}^{\gamma_T^* \rightarrow \rho_T} (k^2) = \frac{-e m_\rho f_\rho}{2 \sqrt{2} Q^2} \frac{\delta^{ab}}{2 N_c} \int_0^1 dy \left\{ (y - \bar{y}) \varphi_1^{TWW} (y) + 2 y \bar{y} \varphi_3^{WW} (y) + \varphi_A^{TW} (y) \right\}
\]

- which simplifies, using equation of motion:

\[
\int dy [(y - \bar{y}) \varphi_1^{TWW} (y) + 2 y \bar{y} \varphi_3^{WW} (y) + \varphi_A^{TWW} (y)] = 0
\]

\[
\Phi_{n.f.}^{\gamma_T^* \rightarrow \rho_T} (k^2) = \frac{e m_\rho f_\rho}{\sqrt{2} Q^2} \frac{\delta^{ab}}{2 N_c} \int_0^1 dy \frac{2 k^2 (k^2 + 2 Q^2 y \bar{y})}{y \bar{y} (k^2 + Q^2 y \bar{y})^2} [(2 y - 1) \varphi_1^{TWW} (y) + \varphi_A^{TWW} (y)]
\]

- **flip** transition:

\[
\Phi_{n.f.}^{\gamma_T^* \rightarrow \rho_T} (k^2) = \frac{-e m_\rho f_\rho}{\sqrt{2} Q^2} \frac{\delta^{ab}}{2 N_c} \int_0^1 dy \frac{2 k^2 Q^2}{(k^2 + Q^2 y \bar{y})^2} [(1 - 2 y) \varphi_1^{TWW} (y) + \varphi_A^{TWW} (y)]
\]
The obtained results are gauge invariant:

\[\Phi \gamma_T^* \rightarrow \rho_T \rightarrow 0 \quad \text{when} \quad k \rightarrow 0 \]

- this is straightforward in the \(WW \) limit
- at the full twist 3 order:
 - the \(C_F \) part of the abelian 3-body contribution cancels the 2-body contribution after using the equation of motion
 - the \(N_c \) part of the abelian 3-body contribution cancels the 3-body non-abelian contribution
 - thus \(\gamma_T^* \rightarrow \rho_T \) impact factor is gauge-invariant only provided the 2 and 3-body contributions have been taken into account in a consistent way
Our results are free of end-point singularities, in both WW approximation and full twist-3 order calculation:

- the flip contribution obviously does not have any end-point singularity because of the k_0^2 which regulates them

- the potential end-point singularity for the non-flip contribution is spurious since $\varphi_A^T(y), \varphi_1^T(y)$ vanishes at $y = 0, 1$ as well as $B(y_1, y_2)$ and $D(y_1, y_2)$.
We have performed a full up to twist 3 computation of the $\gamma^* \rightarrow \rho$ impact factor, in the $t = t_{\text{min}}$ limit.

Our result respects gauge invariance. This is achieved only after including 2 and 3 body correlators.

It is free of end-point singularities (this should be contrasted with standard collinear treatment, at moderate s, where k_T-factorization is NOT applicable: see Mankiewicz-Piller).

Phenomenological applications will be done in the near future.

In this talk we relied on the Light-Cone Collinear approach (Ellis + Furmanski + Petronzio; Efremov + Teryaev; Anikin + Teryaev), which is non-covariant, but very efficient for practical computations.

This Light-Cone Collinear approach is systematic, and can be extended to any process, including higher twist effects (but does not preclude potential end-point singularities).
Conclusions

- Comparison with a fully **covariant approach** by Ball+Braun et al: The dictionary between the two approaches within a full twist 3 treatment is now established:

 \[
 B(y_1, y_2) = - \frac{V(y_1, 1 - y_2, y_2 - y_1)}{y_2 - y_1},
 \]

 \[
 D(y_1, y_2) = - \frac{A(y_1, 1 - y_2, y_2 - y_1)}{y_2 - y_1},
 \]

 \[
 \varphi_1(y) = \phi_\parallel(y),
 \]

 \[
 \varphi_3(y) = g^{(v)}(y),
 \]

 \[
 \varphi_A(y) = - \frac{1}{4} \frac{\partial g^{(a)}(y)}{\partial y}
 \]

- We also performed calculations of the same impact factor within the **covariant approach** by Ball+Braun et al: calculations proceed in quite different way: eg. no $\varphi_{1,A}^T$—DAs but **Wilson** line effects are important!! We got a full agreement with our approach
Phenomenological prospects:

- We have all ingredients necessary to estimate:
 - $\frac{\sigma_L}{\sigma_T}$
 - elements of the density matrix
 - how important are $\bar{q}qq$ contributions compared to $\bar{q}q$ ones
 - generalizations for $t \neq 0$
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Impact factor for exclusive processes</th>
<th>Collinear factorization</th>
<th>Computation and results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

THANK YOU FOR ATTENTION