Accessing Quark Information through Semi-Inclusive DIS Measurements at JLab-12 GeV

Xiaodong Jiang, Los Alamos National Laboratory.

Sept. 18th, 2009 @ JLab-12GeV INT Workshop

- Opportunities of SIDIS at JLab-12GeV.
- How can we tell when we hit a quark?
- Cross sections of π-production at NLO.
- (Instrumentation considerations.)
- Letter-of-Intend (LOI12-07-103) and a new physics proposal for JLab PAC-35
SIDIS Programs at JLab-12 GeV

- A_{UT} transversely polarized target SSA, Collins and Sivers asymmetries to access quark transversity and Sivers distributions.
- A_{LL} longitudinally polarize target double-spin asymmetries to access quark helicity distributions $\Delta u, \Delta d, \Delta u - \Delta d$.
- Hadron azimuthal distributions in SIDIS, like $\cos(2\phi)$, to access transverse momentum dependent parton distributions.

The underline assumptions:
- Hard scattering.
- Independent fragmentation.
- Universality of Fragmentation Functions.

$$z = \frac{E_{\pi}}{\nu}$$
Can we really access quark information at JLab-12 GeV?

- Hard scattering. How can we tell when we hit a quark?
- Fragmentation. Quark information carried out by hadron?
- Extracted Frag. Func. agree with e^+e^- and $p+p$ data?

Do we understand the fundamental cross sections in SIDIS, to the Next-to-Leading-Order?

Do we understand their relative relations, x, Q^2, z, p_t and φ-dependencies?

The first step of the SIDIS program at JLab-12 GeV is to firmly establish the baseline of parton-model interpretation.

What will be the best evidences?
SIDIS hadron multiplicity ➔ cross section

Assuming the inclusive (e,e') cross section is well understood. (SLAC, HERA, JLab-6 GeV ...).

In SIDIS, obtain hadron multiplicity by integrate over hadron azimuthal angle and transverse momentum.

$$
\sigma^h(x,Q^2,z_h) = \frac{1}{\sigma_{tot}^{ee}(x,Q^2)} \int d\phi d^2p_T \frac{d\sigma^{ee'h}(x,Q^2,z_h,\phi,p_T)}{d\phi d^2p_T}
$$

$$
\sigma_{UU}^{ee'h} = A + B \cos \phi + D \cos(2\phi)...
$$

x-dependence comes from parton distribution.
z_h-dependence comes from fragmentation function.
Q^2-dependence comes from both PDFs and Frag. Func.
Leading Order Cross Sections, fractional contributions from each quark flavor

\[\sigma_q / \sigma_{all} = e_f^2 q_f \cdot D_f^h / \sum_i e_i^2 q_i \cdot D_i^h \quad (\text{at } z_h = 0.5) \]
Since there’s no “free” neutron, one has to use Deuteron or 3He targets.

Sea quarks contribute <10%, strange quarks contribute <5% of the total cross section.
SIDIS cross sections at NLO

LO:

NLO-qq:

NLO-qq:

NLO-gq:

\[q(x, Q^2) \cdot D(z, Q^2) \Rightarrow \int \frac{dx'}{x'} \int \frac{dz'}{z'} q\left(\frac{x}{x'}\right) C(x', z') D\left(\frac{z}{z'}\right) \]
NLO global fits for Fragmentation Functions

A global fit to e+e-, SIDIS and p+p data.

Predict cross sections at NLO for JLab-12GeV.

Fit compare with HERMES SIDIS data, R. Sassot et al. 2007.
For example, an experiment with CLAS12 (1000h): SIDIS $\pi^{+/0/-}$ production on proton and deuteron targets

$$ep \rightarrow e'\pi X \quad e(p + n) \rightarrow e'\pi X$$

Form ratios from measured yields N_{π^+}, N_{π^-}

$$\frac{(N_{\pi^+} + N_{\pi^-})^p}{(N_{\pi^+} + N_{\pi^-})^d} \quad \frac{(N_{\pi^+} - N_{\pi^-})^p}{(N_{\pi^+} - N_{\pi^-})^d}$$

Integrate over φ and p_t: hadron multiplicities.

Obtain dependence on Q^2, x_{bj}, z_{π}

High Luminosity $10^{35} \, cm^{-2} \, s^{-1}$
Definition and cuts

\[x_{bj} = \frac{Q^2}{2\nu M} \]
\[z_{\pi} = \frac{E_\pi}{\nu} \]
\[x_F = \frac{2p^*_{//}}{W} \]

* Virtual-photon nucleon CM

\[Q^2 > 1\text{GeV}^2, W > 2\text{GeV}, W' > 1.5\text{GeV}, x_F > 0, p_\pi > 2\text{GeV} / c \]
Cuts for pion on x_F, W'

- $W' > 1.5$
- $x_F > 0$
Q^2 vs. x, z vs. x, P_t vs. x

$10 \times 10 \times 10$ bins in x, Q^2 and z to obtain:
- Q^2 dependence at fixed z and x
- z dependence at fixed Q^2 and x
- P_t dependence at fixed Q^2 and x
Expected results: z-dependence

Curve: Prediction in NLO from R. Sassot.

\[Q^2 = 2.5, \]
\[x = 0.2, 0.3, 0.4, 0.5 \]

\[\pi^0 = \frac{(\pi^+ + \pi^-)}{2} \]

SU(2) symmetry in the fragmentation process?
Hall C data at 5.5 GeV: cross sections

$x=0.32$, $Q^2=2.3$ GeV2.
smooth in $0.4<z<0.65$
agree with LO.

Expected results: Q^2 dependence

Curve: Prediction in NLO from R. Sassot.

$z=0.5,$
$x=0.2, 0.3, 0.4, 0.5$
with beam energy 11, 8.8 and 6.6 GeV
Q^2-dependence, same Q^2 point covered by different beam energy.
The combined-ratios of multiplicities

At LO no z-dependency.

Even at NLO, z-dependency mostly disappeared.

 Ratios become completely determined by quark distributions.

A clear evidence to prove that quark information is well-preserved in the fragmentation process.

At $E_0=5.5$ GeV, we already know from Hall C data...
Hall C data at 5.5 GeV: combined-ratio of multiplicities

Closed (open) symbols reflect data after (before) events from estimated coherent \(\rho \) production are subtracted.

\(x=0.32, Q^2=2.3 \text{ GeV}^2 \).
Flat in \(0.4<z<0.7 \)
Agree with LO parton ratios.

GRV & CTEQ, @ LO or NLO
Fragmentation functions drop out at Leading Order (Isospin symmetry and charge conjugation) in ratios like:

\[
\frac{\sigma_p(\pi^+ + \pi^-)}{\sigma_d(\pi^+ + \pi^-)} = \frac{[4u(x) + d(x)]}{[5(u(x) + d(x))]} \\
\sim \frac{\sigma_p}{\sigma_d} \quad \text{independent of } z
\]

(in $\pi^+-\pi^-$ gluon related terms drop out at all orders.)

\[
\frac{\sigma_p(\pi^+) - \sigma_p(\pi^-)}{\sigma_d(\pi^+) - \sigma_d(\pi^-)} = \frac{[4u(x) - d(x)]}{[3(u(x) + d(x))]} \\
\text{independent of } z
\]
In $\pi^+ - \pi^-$ gluon related terms drop out at all orders

LO:

NLO-qq:

NLO-qg:

NLO-gq:

\[q(x, Q^2) \cdot D(z, Q^2) \Rightarrow \int \frac{dx'}{x'} \int \frac{dz'}{z'} q \left(\frac{x}{x'} \right) C(x', z') D \left(\frac{z}{z'} \right) \]
Kaon multiplicities

Cut on $P_K < 3.0 \text{ GeV/c}$ (no RICH).

Kaon from the hit-quark?
A list of questions for SIDIS at JLab-12 GeV

- π Fragmentation Functions agree with e^+e^-, p+p data?
- Kaon multiplicities agree with NLO prediction?
- Fragmentation to other mesons: η, K^0_s, ρ, ω and ϕ. Ratio of π^0/η.
- Connection between Frag. Func. to hadron structure. Transition from SIDIS to the exclusive limit, a theoretical picture?
- ϕ(s-sbar) in SIDIS carry information of s-quarks? What about spin asymmetries, Sivers asymmetries?
- Λ production and Λ polarization. Spin-transfer, induced polarization, transverse spin asymmetry to access quark transversity.
Summary

- SIDIS@Jlab-12GeV offers many new physics opportunities.
- The first step is to firmly establish the baseline of interpretation.
- Understanding cross sections (multiplicities) of π-production to NLO is the key issue to be addressed.
- A new physics proposal, using the large acceptance CLAS12 detector, is to be submitted to JLab PAC-35.

A large acceptance detector provides:
- coverage in hadron azimuthal angle \(\varphi \).
- coverage in hadron transverse momentum \(p_t \).
Track resolution:
\[\delta p \ (\text{GeV/c}) \quad 0.003p + 0.001p^2 \]
\[\delta q \ (\text{mr}) \quad < \quad 1 \]
\[\delta \phi \ (\text{mr}) \quad < \quad 3 \]

SIDIS kinematics
\[Q^2 > 1 \]
\[W^2 > 4 \]
\[y < 0.85 \]
\[M_X > 2 \]