Nucleon-Nucleon correlations in inclusive and semi-inclusive measurements

M. Alvioli

C. Ciofi degli Atti (Perugia)

M. Strikman (Penn State)

H. Morita (Sapporo)
CONTENTS

1. Experimental evidence for NN correlations
2. Description of many-body nuclei using realistic wave functions
3. Monte Carlo generator of configurations in complex nuclei including correlations
4. Summary and conclusions
Mean Field vs Correlated $A(e,e'p)X$

Mean Field picture:

\[k_1 + k_{A-1} = 0 \]

Two-Body Correlations picture:

\[k_1 + k_2 + k_{A-1} = 0 \]

\[k_1 \simeq -k_2 \]

\[\downarrow \]

back-to-back nucleons

Ciofi, Simula, Frankfurt, Strikman \textit{PRC44 (1991)}

Ciofi, Simula \textit{PRC53 (1996)}

M. Alvioli
Experimental Evidence for Two-Body Correlations

Triple coincidence $A(e, e'pp)X$ and $A(e, e'pn)X$ measurements:

M. Alvioli

$A(e,e'pN)X$ reaction

incident electron

scattered electron

knocked-out proton

correlated partner

Subedi et al.

INT Seattle 09
\[A(e,e'pN), \ N = p, \ n: \ \text{correlated pair measured with:} \]

small center of mass momentum, strong back to back correlation

\[\downarrow \]

\[\begin{array}{c}
\text{Counts} \\
\hline
40 \\
30 \\
20 \\
10 \\
0 \\
\end{array} \]

\[\begin{array}{c}
\text{cos } \gamma \\
\hline
-1.00 \\
-0.98 \\
-0.96 \\
-0.94 \\
-0.92 \\
-0.90 \\
\end{array} \]

\[\downarrow \]

\[\downarrow \]

large relative momentum; strong \(pn \) dominance;

interpreted as *tensor* correlations in the ground state

Alvioli et al., *PRC*72 (2005)

\[\downarrow \]

\[\begin{array}{c}
\text{Mean Field} \\
\text{Central} \\
\text{Central} + \text{Tensor} \\
\end{array} \]

\[\begin{array}{c}
\text{16 O} \\
\end{array} \]

\[\begin{array}{c}
\text{VMC} \\
\end{array} \]

\[\begin{array}{c}
\text{n(k) [fm}^3\text{]} \\
\hline
10^{-1} \\
10^{-2} \\
10^{-3} \\
10^{-4} \\
10^{-5} \\
10^{-6} \\
10^{-7} \\
\end{array} \]

\[\begin{array}{c}
k [fm^{-1}] \\
\hline
0 \\
1 \\
2 \\
3 \\
4 \\
\end{array} \]
Tensor correlations induce strong pn dominance

- Combined results of experiments on ^{12}C show that independent particle model accounts only for low-momentum nucleons.

- 20% of high-momentum nucleons are correlated.

- 18% of high-momentum nucleons are in a proton – neutron SRC pair!

- Calculations suggest the similar relative ratios due to tensor (spin and isospin dependent) correlations!

(Higinbotham, Piasetzky, Strikman, *CERN courier 49N1 (2009)*)
The Nuclear Many-Body Problem

- The nuclear many-body problem:
 \[
 \hat{H} \Psi_n = E_n \Psi_n, \quad \hat{H} = -\frac{\hbar^2}{2m} \sum_i \hat{\nabla}_i^2 + \frac{1}{2} \sum_{i<j} \hat{v}_{ij} + \ldots
 \]

- The ground state wave function obtained variationally using:
 \[
 \Psi_o = \hat{F} \phi_o \quad \longrightarrow \quad \hat{F} = \hat{S} \prod_{i<j} \hat{f}_{ij} = \hat{S} \prod_{i<j} \sum_n f^{(n)}(r_{ij}) \hat{O}^{(n)}_{ij}
 \]
 where
 \[
 \hat{v}_{ij} = \sum_n v^{(n)}(r_{ij}) \hat{O}^{(n)}_{ij}
 \]
 \[
 \hat{O}^{(n)}_{ij} = \left[1, \sigma_i \cdot \sigma_j, \hat{S}_{ij}, (L \cdot S)_{ij}, \ldots \right] \otimes \left[1, \tau_i \cdot \tau_j \right].
 \]

- Set of correlation functions \(f^{(n)}(r) \) obtained variationally with \(AV8' + UIX \) within FHNC/SOC; we use \(n=1,\ldots,6 \) up to tensor \(\hat{S}_{ij} \)
Any one- or two-body quantity can be calculated using:

\[\rho^{(1)}(\mathbf{r}) = A \int \prod_{j=2}^{A} d\mathbf{r}_j \psi_o^\dagger(\mathbf{r}, \mathbf{r}_2, ..., \mathbf{r}_A) \psi_o(\mathbf{r}, \mathbf{r}_2, ..., \mathbf{r}_A) \]

to be compared with electron scattering data;

\[\rho^{(1)}(\mathbf{r}, \mathbf{r}') = A \int \prod_{j=2}^{A} d\mathbf{r}_j \psi_o^\dagger(\mathbf{r}, \mathbf{r}_2, ..., \mathbf{r}_A) \psi_o(\mathbf{r}', \mathbf{r}_2, ..., \mathbf{r}_A) \]

used to calculate: \(\langle T \rangle, \ n^{(1)}(k) \);

\[\rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2) = \frac{A(A-1)}{2} \int \prod_{j=3}^{A} d\mathbf{r}_j \psi_o^\dagger(\mathbf{r}_1, ..., \mathbf{r}_A) \hat{O}^{(n)}_{12} \psi_o(\mathbf{r}_1, ..., \mathbf{r}_A) \]

to calculate \(\langle V \rangle = \sum n \langle v(n) \rho^{(2)}_{(n)} \rangle \); exactly satisfies \(\int d\mathbf{r}_2 \rho^{(2)}_{(n=1)}(\mathbf{r}_1, \mathbf{r}_2) = \frac{A-1}{2} \rho^{(1)}(\mathbf{r}_1) \)

\[\rho^{(2)}(\mathbf{r}_1, \mathbf{r}_2; \mathbf{r}_1', \mathbf{r}_2') = \frac{A(A-1)}{2} \int \prod_{j=3}^{A} d\mathbf{r}_j \psi_o^\dagger(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_A) \psi_o(\mathbf{r}_1', \mathbf{r}_2', \mathbf{r}_3, ..., \mathbf{r}_A) \]

used to calculate \(n^{(2)}(k_1, k_2) \);

\((M. \ Alvioli, \ C. \ Ciofi \ degli \ Atti, \ H. \ Morita, \ PRC72 \ (2005)) \)
$^4\text{He: comparison with VMC}$

\[n_{pN}(k_{rel}) = \int dK_{CM} n_{pN}(k_{rel}, K_{CM}) \]

\[n_{pN}(k_{rel}, K_{CM} = 0) \]

- good agreement with VMC calculations
- \(n_{pn}(k_{rel}, 0)/n_{pp}(k_{rel}, 0) \) peak location ok →

(AV18: Schiavilla at al. PRL98 (2007))

M. Alvioli
\(^4\text{He}: \) comparison with VMC and many-body contributions

\[
n_{pN}(k_{rel}) = \int d\mathbf{K}_{CM} n_{pN}(k_{rel}, \mathbf{K}_{CM})
\]

\(^4\text{He} - \text{pp} \)

\(^4\text{He} - \text{pn} \)

\((\text{AV18}: \text{Schiavilla at al.} \ PRL_{98} \ (2007))\)

\begin{itemize}
 \item Shell Model
 \item two-body
 \item three-body
 \item four-body
\end{itemize}

M. Alvioli
Back-to-Back nucleons: \(pn \) to \(pp \) ratio

\[R_{pN} = \frac{n_{pN}^{\text{tensor}}(k_{\text{rel}}, 0)}{n_{pN}^{\text{central}}(k_{\text{rel}}, 0)} \]

\(R_{pN} \) largely enhanced in the correlation region

(M. Alvioli, C. Ciofi degli Atti, H. Morita, *TAM '07* (Bologna))

Back-to-Back nucleons: pn and pp probabilities

\[P_{pN} = \frac{\int_{a}^{b} dk_{rel} k_{rel}^{2} n_{pN}(k_{rel}, 0)}{\int_{a}^{b} dk_{rel} k_{rel}^{2} \left(n_{pp}(k_{rel}, 0) + n_{pn}(k_{rel}, 0) \right)} ; \quad 0 < P_{pN} < 1 \]

- integration over the whole k_{rel} range: $(a, b) = [0, \infty]$

<table>
<thead>
<tr>
<th>A</th>
<th>4</th>
<th>12</th>
<th>16</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{pp} (%)</td>
<td>19.7</td>
<td>30.6</td>
<td>29.5</td>
<td>31.0</td>
</tr>
<tr>
<td>P_{pn} (%)</td>
<td>81.3</td>
<td>69.4</td>
<td>70.5</td>
<td>69.0</td>
</tr>
</tbody>
</table>

- correlation region: $(a, b) = [1.5, 3.0] \text{ fm}^{-1}$

<table>
<thead>
<tr>
<th>A</th>
<th>4</th>
<th>12</th>
<th>16</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{pp} (%)</td>
<td>2.9</td>
<td>13.3</td>
<td>10.8</td>
<td>24.0</td>
</tr>
<tr>
<td>P_{pn} (%)</td>
<td>97.1</td>
<td>86.7</td>
<td>89.2</td>
<td>76.0</td>
</tr>
</tbody>
</table>

$P_{pN}^{A=4}$ in agreement with Schiavilla et al., PRL98 (2007)
(extracted from published figures, AV18: $P_{pp} \simeq 3\%$, $P_{pn} \simeq 97\%$)

$P_{pp} \simeq 10 - 13\%$ consistent with Shneor et al., PRL99 (2007)
(extracted from $^{12}C(e, e'pp)X / ^{12}C(e, e'p)X$)

(Alvioli, Ciofi degli Atti, Morita PRL100 (2008))
center of mass of the pair $\neq 0$

$$n_{pn}^{(2)}(k_{rel}, K_{CM}) = n_{pn}^{(2)} \left(\frac{k_1}{2} - \frac{k_2}{2}, k_1 + k_2 \right)$$

pn pairs - $\theta_{k_1k_2} = 180^\circ$ - $k_1 \neq k_2$ - $K_{CM} \parallel k_{rel}$

12C preliminary - calculations in progress for $K_{CM} \perp k_{rel}$
correlated vs. random (parallel) momenta

\[n_n^{(1)}(k_1^{(1)}, k_2^{(1)}) / n_{pn}^{(2)}(k_1, k_2) \]

\[\theta_{k_1k_2} = 180^\circ \]

\[K_{CM} = 0 \]

\[K_{CM} = k_1 + k_2 \neq 0 \]

\[k_{rel} = \frac{1}{2}(k_1 - k_2) \]

\[K_{CM} \parallel k_{rel} \]

\[K_{CM} = 0.0 \]

\[k_1 \quad k_2 \]

\[k_{rel} \]

\[K_{CM} = 0.5 \]

\[K_{CM} = 1.0 \]

\[K_{CM} = 1.5 \]

\[12C \text{ preliminary - calculations in progress for } K_{CM} \perp k_{rel} \]

M. Alvioli

INT Seattle 09
modified pn/pp relative probabilities (at $K_{CM} = 0$)

We define a modified pn/pp ratio

$$R(k_{rel}) = \frac{n^{(2)}_{pn}(k_{rel}, K_{CM}=0)}{n^{(2)}_{pp}(k_{rel}, K_{CM}=0)} \left(1 - \frac{n^{(1)}_{p}(k_{rel})n^{(2)}_{n}(k_{rel})}{n^{(2)}_{pn}(k_{rel}, K_{CM}=0)}\right) = \frac{n^{mod}_{pn}(k_{rel}, K_{CM}=0)}{n^{mod}_{pp}(k_{rel}, K_{CM}=0)}$$

M. Alvioli
modified pp relative probabilities (at $K_{CM} = 0$)

$$P_{pp}^{mod} = \frac{\int_a^b dk_{rel} k_{rel}^2 n_{pp}^{mod}(k_{rel}, 0)}{\int_a^b dk_{rel} k_{rel}^2 \left(n_{pp}^{mod}(k_{rel}, 0) + n_{pn}^{mod}(k_{rel}, 0) \right)} ; \quad 0 < P_{pN} < 1$$
three-body correlations?

We can easily evaluate within the cluster expansion the three-body density

\[\rho^{(3)}(r_1, r_2, r_3; r'_1, r'_2, r'_3) \]

and calculate, for given values of \(k_1, k_2 \) and \(k_3 \)

\[
n(k_1, k_2, k_3) = \frac{1}{(2\pi)^9} \int \prod_{i=1}^{3} dr_i dr'_i e^{i \sum_{j=1}^{3} k_j \cdot (r_j - r'_j)} \rho^{(3)}(r_1, r_2, r_3; r'_1, r'_2, r'_3) \]

the random “noise” to be subtracted:

\[
n^{(1)}(k_1)n^{(2)}(k_2, k_3) + \]
\[
+ n^{(1)}(k_2)n^{(2)}(k_1, k_3) + \]
\[
+ n^{(1)}(k_3)n^{(2)}(k_1, k_2) + \]
\[
+ n^{(1)}(k_1)n^{(1)}(k_2)n^{(1)}(k_3) \]
A Monte Carlo generator for nucleon configurations

- Configurations generated according to the independent particle model contain overlapping nucleons.

- Simple excluded volume models rejecting Monte-Carlo generated overlapping nucleons do not reproduce the nucleus density used as an input.

- We developed a Metropolis code to include NN correlations in a way which is consistent with the input one-body density and with a realistic two-body density (M. Alvioli, H.-J. Drescher, M. Strikman PLB 680(2009)).
We used $|\Psi|^2$ as a Metropolis weight function

$$\Psi(r_1, ..., r_A) = \prod_{i<j}^A \hat{f}(r_{ij}) \Phi(r_1, ..., r_A)$$

where Φ is given by the independent particle model.

$$C(r) = 1 - \rho^{(2)}(r)/\rho^{(1)}(r_1)\rho^{(1)}(r_2)$$

• new result: with correlation functions from variational calculations!

M. Alvioli

INT Seattle 09
hadron-nucleus collisions

• probability of interaction with nucleon i: $P(b, b_i) = 1 - [1 - \Gamma(b - b_i)]^2$

• $\Gamma(b)$ is the usual Glauber profile

• probability of interaction with N nucleons, vs impact parameter $b \rightarrow$

given by:

$$P_N(b) = \sum_{i_1, \ldots, i_N} P(b, b_{i_1}) \cdots \cdots P(b, b_{i_N}) \prod_{j \neq i_1, \ldots, i_N}^{A-N} \left[1 - P(b, b_j) \right]$$
• average number of single and double collisions:

\[\langle N \rangle = \sum N P_N(b) \]

\[\langle N(N - 1) \rangle = \sum \left(N^2 - N \right) P_N(b) \]

• variance of \(\langle N \rangle \):

\[D(b) = \frac{\langle N^2 \rangle - [\langle N \rangle]^2}{\langle N \rangle} \]

• correlations give a non-negligible effect.

(M. Alvioli, H.-J. Drescher, M. Strikman

Nucleus - Nucleus collisions; RHIC at low energies

- soft nucleon emitted at large angles
- for $b \sim R_A$ fast nucleons emitted at definite angles originate from correlations
- trigger efficiency altered by fast nucleons emission
- excitation energy of the spectator system: $- \sum_{s,w} \langle V_{sw} \rangle$
 $(s=$ spectator nucleons $w=$ wounded nucleons $)$
largely affected by correlations

M. Alvioli
Potential energy: \(pn \) and \(pp \) contributions

\[
\langle V \rangle_{pN} = \sum_j \int d\mathbf{r}_{12} \, v_p^{(j)}(r_{12}) \rho_p^{(2)(j)}(r_{12}), \quad v^{(j)}(r_{12}) \in AV8'
\]

\(^{16}\text{O} - \text{NN} \) \hspace{2cm} \(^{16}\text{O} - \text{pp} \) \hspace{2cm} \(^{16}\text{O} - \text{pn} \)

\[
A \quad \langle V \rangle_{pp}(= \langle V \rangle_{nn}) \quad \langle V \rangle_{pn}
\]
\[
\begin{array}{c|cc}
16 & 8\% & 83\% \\
40 & 9\% & 82\%
\end{array}
\]

no tensor correlations \(\rightarrow \) proportionality to number of pairs restored

M. Alvioli

INT Seattle 09
Nucleons marked in green were correlated with one interacting nucleon.

Large energy released by disrupting correlated pairs: mostly from pn pairs!

Nucleons with large momentum are emitted by disrupting correlated pairs!

Configurations: http://www.phys.psu.edu/~malvioli/eventgenerator
spectator neutrons in Lead - Lead

new result: large N_1/N_2 dispersion at medium impact parameter

M. Alvioli
Summary

- Many-body calculations can be reliably performed within a convergent cluster expansion method: any one and two-body quantity can be calculated.
- The contributions of different isospin pairs to two-body momentum distributions and to binding energy of nuclei have been calculated.
- High-energy processes are also affected by NN correlations (Claudio’s talk and Alvioli, Ciofi, Morita, Palli PRC78 2008 and Alvioli, Ciofi, Kopelevich, Potashnikova, Schmidth to appear)
- Inclusion of NN correlations in calculations of nuclear reactions on an event-by-event basis can be made using correlated nucleon configurations generated by Monte Carlo in a consistent way; MC-generated configurations at: http://www.phys.psu.edu/~malvioli/eventgenerator
- Three-body correlations? Calculations for neutron stars?
- New experiments are scheduled on 4He and $^{40}Ca/^{48}Ca$ to investigate SRC effects as a function of A.