Nuclear Energy Density Functional Method

How to (safely...) account for correlations in ground and excited states of heavy nuclei?

T. Duguet1,2, M. Bender3, D. Lacroix4

1DSM/IRFU/SPhN, CEA Saclay, France
2NSCL and Department of Physics and Astronomy, MSU, USA
3CENBG, Bordeaux, France
4GANIL, Caen, France
Ultimate goals

Ground state
Mass, deformation

Spectroscopy
Spectroscopy

Collective modes
RPA, QRPA, GCM

Reaction properties
Fusion, transfer, elastic

Heavy elements
Fission, fusion, SHE

Exotic behaviors
Drip-lines, halos

Astrophysics
r-process, NS, SN

From underlying NN and NNN interactions
Nuclear EDF method: key points

I EDF method addresses both ground and excited states
One single energy functional
Two levels of many-body implementations
• Single reference
• Multi reference

II EDF method addresses both structure and reactions properties
Two different schemes
• Time independent for structure properties
• Time dependent for structure and reaction properties

III EDF method is currently transitioning from empirical to non/less empirical
Energy kernel(s) so far built by analogy with matrix elements of fictitious « H »
• Base-line and insights from strict « H »-based approach
• EDF extends it empirically to grasp additional necessary correlations
Accuracy/predictive power of current empirical EDFs not sufficient/satisfactory
• Need to improve current phenomenology (e.g. M. Stoitsov, M. Kortelainen)
• Constrain EDF kernels from vacuum H and MBPT (e.g. T. Lesinski, B. Gebremariam)
Departure from « H »-based picture is at the origin of potentially serious problems
• Need to better formulate the empirical method
• Work needed to formulate the two-level EDF method from first principles
Single-Reference = « Mean-field »

I Formalism in a nutshell
\[\mathcal{E}[\rho, \kappa, \kappa^*] = \text{functional of one-body density matrices} \]
\[\rho_{ji} = \langle \Phi | c_i^+ c_j | \Phi \rangle \quad ; \quad \kappa_{ji} = \langle \Phi | c_i c_j | \Phi \rangle \]
\[|\Phi\rangle = \text{auxiliary, symmetry-breaking product state (N, Z, J^2, P^2, \Pi)} \]

II Included correlations
- « Bulk » ones into \(\mathcal{E}[\rho, \kappa, \kappa^*] \) (2nd order MBPT in infinite nuclear matter)
- « Static » collective ones through symmetry breaking (\(\rho \) and \(\kappa \))
- Outside the frame of standard HK theorem of DFT

III Applications and observables
- Nuclear equation of state
- Binding energies (different for odd/even nuclei)
- Shell structure \(\varepsilon \) and pairing gaps \(\Delta \) through total energy differences
- Deformation properties and fission barriers
- Charge densities, neutron skin, radii
- Individual and rotational excitations
Standard energy functionals

I Functional form
• Skyrme is quasi-local / Gogny is non-local
• Skyrme’s basic structure is bilinear in the following local densities

\[
\rho_q(\vec{r}) \equiv \sum_\sigma \rho_q(\vec{r}\sigma, \vec{r}\sigma) \quad \text{Matter density}
\]
\[
\tau_q(\vec{r}) \equiv \sum_\sigma \nabla \cdot \nabla' \rho_q(\vec{r}\sigma, \vec{r}'\sigma)|_{\vec{r}=\vec{r}', \sigma} \quad \text{Kinetic density}
\]
\[
\bar{s}_q(\vec{r}) \equiv \sum_{\sigma\sigma'} \rho_q(\vec{r}\sigma, \vec{r}'\sigma) \bar{\sigma}_{\sigma',\sigma} \quad \text{Spin density}
\]
\[
\bar{j}_q(\vec{r}) \equiv \sum_\sigma i/2 (\nabla' - \nabla) \rho_q(\vec{r}\sigma, \vec{r}'\sigma)|_{\vec{r}=\vec{r}', \sigma} \quad \text{Current density}
\]
\[
\bar{\rho}_q(\vec{r}) \equiv \sum_\sigma \kappa_q(\vec{r}\sigma, \vec{r}\bar{\sigma}) \bar{\sigma} \quad \text{Pair density}
\]

II Basic features
• Symmetry rules to build allowed terms
• Simplistic density-dependent couplings at this point
 • \(\mathcal{E}[\rho, \kappa, \kappa^*] = \langle \Phi||H||\Phi\rangle/\langle \Phi|\Phi\rangle \) would tie Cs together/forbid dens.-dep. Cs
• Universal = applicable to all nuclei without local adjustment
• Empirical = no link to NN/NNN + fitted to experimental data
Multi-Reference = « Beyond mean-field »

I Formalism in a nutshell

\[\mathcal{E}[\rho^{01}, \kappa^{01}, \kappa^{10*}] = \text{functional of one-body transition density matrices} \]

\[\rho_{ij}^{01} = \frac{\langle \Phi_0 | a_j^+ a_i | \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle} \quad \kappa_{ij}^{01} = \frac{\langle \Phi_0 | a_j a_i | \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle} \]

\{ |\Phi_0\rangle ; |\Phi_1\rangle \} = \text{MR set of auxiliary, symmetry-breaking product states}

II Further correlations included

- « Dynamical » collective ones
- Fluctuations of \(|\Delta]\rangle e^{i\phi} \) of broken symmetries
- M. Bender et al.

III Applications and observables

- All what is calculated in SR
- Vibrational excitations (note: QRPA is a small amplitude limit of MR EDF)
- Rotational bands of transitional nuclei
- LACM and shape coexistence
- E.M. transitions in the lab frame

\[\mathcal{E}^k = \sum_{\{0,1\} \in \text{MR}} \frac{f_0^k f_1^k}{f_0^k} \mathcal{E}[0, 1] \langle \Phi_0 | \Phi_1 \rangle \frac{\langle \Phi_0 | \Phi_1 \rangle}{\sum_{\{0,1\} \in \text{MR}} f_0^k f_1^k} \]

\[\mathcal{E}[0, 1] \equiv \mathcal{E}[\rho^{01}, \kappa^{01}, \kappa^{10*}] \]
Some tricky points

I Should SR-EDF be final for gs and MR-EDF left for excited states?
Some practitioners believe so by analogy with DFT

- Symmetry breaking/restoring?
- Intrinsic DFT [J. Messud et al., arXiv:0904.0162]? For all symmetries? Is that convenient?

II Seems difficult in practice to account for dynamical correlations in SR-EDF

III Danger of double counting correlations
Splitting into « bulk/static/dynamical » not based on first principles

- There is no obvious separation of (energy) scales
- EDF built empirically and fitted at the SR level so far

Need to design a non-empirical framework

- On going effort as for building the SR-EDF from NN/NNN + MBPT
- But how does MR-EDF fits in? No first-principle backup so far

IV Unexpected, though very serious, additional difficulties...
Spurious divergencies and steps in PNR calculations

I Given the SR EDF

\[\mathcal{E}_{SR}[\rho^{00}, \kappa^{00}, \kappa^{00*}] = \sum_{ij} t_{ij} \rho_{ji}^{00} + \frac{1}{2} \sum_{ijkl} \tilde{v}_{ijkl}^{\rho_{ij}} \rho_{ki}^{00} \rho_{lj}^{00} + \frac{1}{4} \sum_{ijkl} \tilde{v}_{ijkl}^{\kappa_{ij}} \kappa_{ij}^{00} \kappa_{kl}^{00} \]

\[+ \frac{1}{6} \sum_{ijklmn} \tilde{v}_{ijklmn}^{\rho_{ijk}} \rho_{li}^{00} \rho_{mj}^{00} \rho_{nk}^{00} + \frac{1}{4} \sum_{ijklmn} \tilde{v}_{ijklmn}^{\kappa_{ijk}} \kappa_{ij}^{00} \kappa_{jk}^{00} \kappa_{mn}^{00} + \ldots \]

II Particle Number Restoration: one particular MR mode

\[\mathcal{E}^N \equiv \int_0^{2\pi} d\varphi \frac{e^{-i\varphi N}}{2\pi c_N^2} \mathcal{E}_{MR}[\Phi_0, \Phi_\varphi] \langle \Phi_0 | \Phi_\varphi \rangle \]

with the MR set

\[
\left\{
|\Phi_\varphi\rangle \equiv e^{i\varphi \hat{N}} |\Phi_0\rangle ; \varphi \in [0, 2\pi] \\
\mathcal{E}_{MR}[\Phi_0, \Phi_\varphi] \equiv \mathcal{E}_{SR}[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0*}]
\right\}
\]

But where does this prescription come from!?

[J. Dobaczewski et al., PRC76 (2007)]

[M. Bender, T. Duguet, IJMP E16 (2007)]
Definition of non-diagonal EDF kernels for MR calculations

\[\mathcal{E}_H \left(\rho^{00}, \kappa^{00}, \kappa^{00*} \right) \]

- Hamiltonian based

\[\rho_{ij}^{00} = \frac{\langle \Phi_0 | a_j^+ a_i | \Phi_0 \rangle}{\langle \Phi_0 | \Phi_0 \rangle}, \quad \kappa_{ij}^{00} = \frac{\langle \Phi_0 | a_j a_i | \Phi_0 \rangle}{\langle \Phi_0 | \Phi_0 \rangle} \]

\[\mathcal{E}_{EDF} \left(\rho^{00}, \kappa^{00}, \kappa^{00*} \right) \]

- EDF case

\[\rho_{ij}^{00} = \frac{\langle \Phi_0 | a_j^+ a_i | \Phi_0 \rangle}{\langle \Phi_0 | \Phi_0 \rangle}, \quad \kappa_{ij}^{00} = \frac{\langle \Phi_0 | a_j a_i | \Phi_0 \rangle}{\langle \Phi_0 | \Phi_0 \rangle} \]

\[\mathcal{E}_{EDF} \left(\rho^{01}, \kappa^{01}, \kappa^{01*} \right) \]

- Generalized Wick Theorem (GWT)

\[\rho_{ij}^{01} = \frac{\langle \Phi_0 | a_j^+ a_i \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle}, \quad \kappa_{ij}^{01} = \frac{\langle \Phi_0 | a_j a_i \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle}, \ldots \]

\[\mathcal{E}_{EDF} \left(\rho^{01}, \kappa^{01}, \kappa^{01*} \right) \]

- Standard Wick Theorem (SWT)

\[\rho_{ij}^{01} = \frac{\langle \Phi_0 | a_j^+ a_i \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle}, \quad \kappa_{ij}^{01} = \frac{\langle \Phi_0 | a_j a_i \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle}, \ldots \]

- [B. Balian, E. Brezin, Nuovo Cimento 64 (1969)]

- Is the GWT-based extension procedure to be questioned in the EDF context?
- If it is so, all MR modes and not only PNR should be compromised
- Is there a safe and motivated alternative?
The problem is indeed not specific to PNR

I Particle number restoration

II Angular momentum restoration

EDF with integer powers ρ^2

III Shape mixing

To be studied
Pathologies due to departure from “H”-based picture

(I) [D. Lacroix, T. Duguet, M. Bender, to appear in PRC; arXiv:0809.2041]

I Sources of pathologies

- **Self-Interaction (SR+MR)**
 - Not dramatic a priori
 - Need to be characterized

- **Self-Pairing (SR+MR)**
 - Not dramatic a priori
 - Need to be characterized

- **GWT-motivated procedure within EDF framework (MR only)**
 - Divergences, sharp steps, smooth steps plus kink

II Cure MR EDF kernels first

- Find alternative to GWT
- Identify critical terms
- Remove pathologies in EDF case
Starting point:

\[|\Phi_0\rangle = C_0 \prod_{\nu} \alpha_{\nu} |0\rangle \]
\[|\Phi_1\rangle = C_1 \prod_{\nu} \beta_{\nu} |0\rangle \]

\[\alpha_{\nu}^+ = \sum_{i} (U_{i\nu}^0 a_i^+ + V_{i\nu}^0 a_i) \]
\[\beta_{\nu}^+ = \sum_{i} (U_{i\nu}^1 a_i^+ + V_{i\nu}^1 a_i) \]

\[\beta_{\mu}^+ = \sum_{\nu} (A_{\nu\mu} \alpha_{\nu}^+ + B_{\nu\mu} \alpha_{\nu}) \]
\[A = U_0^+ U_1 + V_0^+ V_1 \]
\[B = V_0^T U_1 + U_0^T V_1 \]

The Balian-Brezin (Thouless) strategy => GWT

Start from \(|\Phi_1\rangle \propto e^{S(\alpha,\alpha^+)} |\Phi_0\rangle \)
\[\beta = e^S \alpha e^{-S} \]
valid for \(\langle \Phi_0 | \Phi_1 \rangle \neq 0 \)

Work on the transformation

\[\frac{\langle \Phi_0 | \hat{H} | \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle} = e^H (\rho_0^1, \kappa_0^1, \kappa_1^0) \]

The Bloch-Messiah-Zumino Strategy => SWT

Work directly on A and B

\[A = D \tilde{A} C \quad B = D^* \tilde{B} C \]

\[B(p) = \begin{pmatrix} 0 & \tilde{B}_{pp} \\ \tilde{B}_{pp} & 0 \end{pmatrix} \quad \tilde{A}(p) = \begin{pmatrix} \tilde{A}_{pp} & 0 \\ 0 & \tilde{A}_{pp} \end{pmatrix} \]

Simplify the connection (valid if \(\langle \Phi_0 | \Phi_1 \rangle = 0 \))

\[\tilde{\beta}_{\nu}^+ = \tilde{A}_{\nu\nu} \tilde{\alpha}_{\nu}^+ + \tilde{B}_{\nu\nu} \tilde{\alpha}_{\nu} \]
\[|\Phi_1\rangle = c_{01} \prod (\tilde{A}_{pp}^* + \tilde{B}_{pp}^* \tilde{\alpha}_p \tilde{\alpha}_p^+) |\Phi_0\rangle \]
Interest of the Bloch-Messiah-Zumino technique
some Theorems made simple/recovered

\[|\Phi_1\rangle = \tilde{c}_{01} \prod (\tilde{A}_{pp}^* + \tilde{B}_{pp}^* \tilde{a}_p^+ \tilde{a}_p^+) |\Phi_0\rangle \]

Overlaps

\[\langle \Phi_0 | \Phi_1 \rangle = \tilde{c}_{01} \prod \tilde{A}_{pp}^* = \tilde{c}_{01} \sqrt{\det(\tilde{A}^*)}. \]

(Onishi-Yoshida)

Thouless

\[|\Phi_1\rangle = \tilde{c}_{01} \prod \tilde{A}_{pp}^* (1 + \tilde{Z}_{pp} \tilde{a}_p^+ \tilde{a}_p^+) |\Phi_0\rangle = N_{01} e^{\sum_p \tilde{Z}_{pp} \tilde{a}_p^+ \tilde{a}_p^+} |\Phi_0\rangle \]

if \(\tilde{A}_{pp}^* \neq 0 \) we define \(\tilde{Z}_{pp} = (\tilde{B}_{pp} \tilde{A}_{pp}^{-1})^* \)

Expectation values through SWT instead of GWT

MR

MR

SR

MR

Thomas Duguet - INT Program on Effective Field Theories and the Many-Body Problem - Seattle, April 2009
Correct GWT-based definition of MR kernels

Strategy: compare SWT to GWT for MR kernel from “H” + extend to EDF

Notations \(\langle \Phi_0 | \Phi_1 \rangle = \bar{A}_{\nu \nu} \langle \Phi_0 | \Phi_1, \nu \rangle = \bar{A}_{\nu \nu} \bar{A}_{\mu \mu} \langle \Phi_0 | \Phi_1, \nu, \mu \rangle \)

with \(\langle \Phi_0 | \Phi_1, \nu \rangle = \langle \Phi_0 | \Phi_1, \bar{\nu} \rangle \) and \(\langle \Phi_0 | \Phi_1, \nu, \mu \rangle = \langle \Phi_0 | \Phi_1, \nu, \bar{\nu} \rangle = 0 \)

\(\langle \Phi_0 | \hat{V}_{12} | \Phi_1 \rangle \) Direct

\begin{align*}
&+ \frac{1}{2} \sum_{\nu \mu i j k l} \hat{V}_{i v}^{0} \hat{V}_{j u}^{0} \hat{V}_{i 0}^{0} \hat{V}_{i 0}^{0} \bar{\nu}_{i j k l}^{0} \langle \Phi_0 | \Phi_1 \rangle \\
&+ \frac{1}{2} \sum_{\nu \mu i j k l} \hat{V}_{i v}^{0} \hat{V}_{j u}^{0} \hat{V}_{l 0}^{0} \hat{U}_{k 0}^{0} \bar{\nu}_{i j k l}^{0} \bar{B}_{p v}^{*} \langle \Phi_0 | \Phi_1, \nu \rangle \\
&+ \frac{1}{2} \sum_{\nu \mu i j k l} \hat{V}_{i v}^{0} \hat{V}_{j u}^{0} \hat{U}_{l 0}^{0} \hat{U}_{k 0}^{0} \bar{\nu}_{i j k l}^{0} \bar{B}_{p v}^{*} \bar{B}_{p v}^{*} \langle \Phi_0 | \Phi_1, \nu, \mu \rangle \\
&+ \frac{1}{4} \sum_{\nu \mu i j k l} \hat{V}_{i v}^{0} \hat{U}_{l 0}^{0} \hat{U}_{i 0}^{0} \hat{U}_{k 0}^{0} \bar{\nu}_{i j k l}^{0} \langle \Phi_0 | \Phi_1 \rangle \\
&+ \frac{1}{4} \sum_{\nu \mu i j k l} \hat{V}_{i v}^{0} \hat{U}_{j 0}^{0} \hat{U}_{l 0}^{0} \hat{U}_{k 0}^{0} \bar{\nu}_{i j k l}^{0} \bar{B}_{p v}^{*} \langle \Phi_0 | \Phi_1, \nu \rangle \\
&+ \frac{1}{4} \sum_{\nu \mu i j k l} \hat{V}_{i v}^{0} \hat{U}_{j 0}^{0} \hat{U}_{i 0}^{0} \hat{U}_{k 0}^{0} \bar{\nu}_{i j k l}^{0} \bar{B}_{p v}^{*} \bar{B}_{p v}^{*} \langle \Phi_0 | \Phi_1, \nu, \mu \rangle \\
&+ \frac{1}{4} \sum_{\nu \mu i j k l} \hat{V}_{i v}^{0} \hat{V}_{j 0}^{0} \hat{U}_{l 0}^{0} \hat{U}_{k 0}^{0} \bar{\nu}_{i j k l}^{0} \bar{B}_{p v}^{*} \bar{B}_{p v}^{*} \langle \Phi_0 | \Phi_1, \nu, \mu \rangle
\end{align*}

Summary of pathologies

\{ \text{SR- self-interaction} \}

\{ \text{MR self-inter/self-pairing} \}

\{ \text{Diverg/step} \}

\{ \text{SR-self-inter/self-pairing} \}

\{ \text{MR self-inter/self-pairing} \}

\{ \text{Diverg/step} \}
Practical regularization procedure

(I) \[[D. Lacroix, T. Duguet, M. Bender, to appear in PRC; arXiv:0809.2041] \]

I Start from a given SR EDF \(\mathcal{E}_{SR}[\rho^{00}, \kappa^{00}, \kappa^{00}^*] \)
Can only depend on integer powers of the density matrices

II Consider a MR mode
Can be any combination modes allowed by the code

III Given \(\{|\Phi_0\rangle; |\Phi_1\rangle\} \) proceed to BMZ decomposition of Bogoliubov transfo
To be done for each pair of reference states

IV Define \(\mathcal{E}_{MR}[\Phi_0, \Phi_1] = \mathcal{E}_{SR}[\rho^{01}, \kappa^{01}, \kappa^{10}^*] \) and subtract spurious terms
Leaves SR EDF untouched

First application: particle number restoration

I Step III above is trivial in this particular case

II Terms to be removed from \(\mathcal{E}_{MR}[\Phi_0, \Phi_\varphi] \)

\[
\begin{align*}
\rho \rho \text{ term } \quad & \mathcal{E}_{CG}^{\rho \rho}[0, \varphi] = \frac{1}{2} \sum_p \left\{ \tilde{v}_{pppp}^{\rho} + \tilde{v}_{pppp}^{\rho} + \tilde{v}_{pppp}^{\rho} + \tilde{v}_{pppp}^{\rho} \right\} (u_p v_p)^4 \frac{(e^{2i\varphi} - 1)^2}{(u_p^2 + v_p^2 e^{2i\varphi})^2} \\
\kappa \kappa \text{ term } \quad & \mathcal{E}_{CG}^{\kappa \kappa}[0, \varphi] = -\sum_p \tilde{v}_{pppp}^{\kappa \kappa} (u_p v_p)^4 \frac{(e^{2i\varphi} - 1)^2}{(u_p^2 + v_p^2 e^{2i\varphi})^2}
\end{align*}
\]
First application: particle number restoration

- Regularized results are mesh independent
- Regularization most often reduces the gain from PNR
- Correction important at but also away from steps
- Correction of the order of 0.5 to 1.0 MeV
- Small enough for existing calculations to make sense
- Of the order of the required mass accuracy and spectroscopic scale
- In all cases, correction reduces the noise
- Need to study other MR modes
Conclusions

- Specific difficulties to be considered seriously

- Regularization method valid for any MR calculation

- Application to Particle Number Restoration
 (II) Bender et al, First application to PNR, to appear in PRC; arXiv:0809.2045

- Specific case of fractional power of the density: ρ^γ

- Need to build
 (i) Correctable EDF for MR calculations
 (ii) SI- and SP-free EDF

- Need a constructive frame
Extra material
Addition

I TDDFT accounts for excited states

• Linear response = extended RPA
• Adiabatic approximation \Leftrightarrow Residual interaction $= \frac{\delta^2 E}{\delta^2 \rho}$
• Looks like nuclear RPA but NO feedback onto g.s. energy
• Excitation in odd nuclei include fractionation of strength
Energy Density Functional method: as practitioners use it

Basic elements
- Approaches not based on a correlated wave-function
- Energy is postulated to be a functional of one-body density (matrices) $\mathcal{E}[\rho, \kappa, \kappa^*]$
- Symmetry breaking is at the heart of the method
- Two formulations (i) Single-Reference (ii) Multi-Reference

Pros
- Use of full single-particle space
- Collective picture but fully quantal
- Universality of the EDF ($A \approx 16$)
- Ground-state description
- Static (smooth) correlations

Difficulties
- No universal parametrization
- Empirical ≠ predictive power
- Spectroscopy / odd nuclei
- Dynamical (fluctuating) correlations
- Limited accuracy ($\sigma_{2135}^{\text{mass}} \approx 700$ keV)

- Skyrme = quasi-local / Gogny = non-local
- Parameters adjusted on a set of data (bias on bulk properties so far)
- Good performances for properties of known nuclei
- “Asymptotic freedom” as one jumps into the next major shell
Energy Density Functionals: Implications

The binding energy is a functional of densities and currents
Skyrme EDF: all local densities up to second order in σ and derivatives

- Binding and nuclear equation of state
- Shell structure and pairing gaps
- Deformation and fission barriers
- Charge densities, neutron skin, radii
- Individual and rotational excitations

Time-independent multi-reference
- Add dynamical correlations to SR
- Vibrational excitations
- Rotational bands of transitional nuclei
- LACM and shape coexistence
- E.M. transitions

Time-dependent single-reference
- Vibrational excitations
- Reactions

Good performances for known nuclei
"Asymptotic freedom" as one goes away from known data

Empirical = no link to NN/NN

Stable isotopes
- Good performances for known nuclei
- "Asymptotic freedom" as one goes away from known data

Empirical = no link to NN/NN

Couplings adjusted on a restricted set of data
Extrapolated to all other observable and nuclei

SPIRAL2 will help constrain isovector part of EDF
- In the next major shell
- Up to $(N-Z)/A \sim 0.33$

Stable isotopes
- Good performances for known nuclei
- "Asymptotic freedom" as one goes away from known data

Empirical = no link to NN/NN

Couplings adjusted on a restricted set of data
Extrapolated to all other observable and nuclei

SPIRAL2 will help constrain isovector part of EDF
- In the next major shell
- Up to $(N-Z)/A \sim 0.33$
Limitations of current EDFs: one specific example

Shell evolution with N-Z

Opening and closing of shell gaps not under control

Impact the balance between spherical and deformed configurations

Weakening of N=40 shell gap in neutron-rich Cr isotopes

- Onset of deformation
- Position of $\nu g_{9/2}$ shell at N=40
- Constraints on shell position and evolution

H. Oba, M. Matsuo (2008)
Implementations: limitations

Quantum collective fluctuations in reactions
Impossibility to account for tunneling in sub-barrier fusion

Fusion cross section

- Very satisfactory fusion barriers
- Wide range of reaction partners
- Above-threshold cross section
- No adjustment whatsoever

Sub-barrier fusion
- Quantum tunneling
- Time-dependent MR-EDF formalism

Time-dependent SR-EDF calculation

C. Simenel (2007)
Construction of the EDF: Single-Ref.
The "nuclear physics strategy"

Hamiltonian case

$$\hat{H} = \sum_{ij} t_{ij} a_i^+ a_j + \frac{1}{4} \sum_{ijkl} \bar{\nu}_{ijkl} a_i^+ a_j^+ a_l a_k + \cdots$$

Standard Wick Theorem

$$\frac{\langle \Phi_0 | \hat{H} | \Phi_0 \rangle}{\langle \Phi_0 | \Phi_0 \rangle} = \sum_{ij} t_{ij} \rho_{ji}^{00} + \frac{1}{2} \sum_{ijkl} \bar{\nu}_{ijkl} \rho_{ki}^{00} \rho_{lj}^{00} + \frac{1}{4} \sum_{ijkl} \bar{\nu}_{ijkl} \kappa_{ij}^{00} \kappa_{kl}^{00}$$

$$\equiv \mathcal{E}^H(\rho^{00}, \kappa^{00}, \kappa^{00*})$$

Breaking the link with the Hamiltonian

- Introduction of new terms ρ^γ
- Different interactions in ph and pp channels $\bar{\nu}^\rho \neq \bar{\nu}^{\kappa\kappa}$
- Technical issues: coulomb, exchange...

Energy Density Functional case

$$\mathcal{E}_{EDF}(\rho^{00}, \kappa^{00}, \kappa^{00*}) = \sum_{ij} t_{ij} \rho_{ji}^{00} + \frac{1}{2} \sum_{ijkl} \bar{\nu}_{ijkl}^\rho \rho_{ki}^{00} \rho_{lj}^{00} + \frac{1}{4} \sum_{ijkl} \bar{\nu}_{ijkl}^{\kappa\kappa} \kappa_{ij}^{00} \kappa_{kl}^{00}$$

Thomas Duguet - INT Program on Effective Field Theories and the Many-Body Problem - Seattle, April 2009
Particle Number Restoration

(II) Bender et al, First application to PNR, arXiv/0809.2045

Trial state

\[|\Psi^N\rangle = \int_0^{2\pi} \frac{d\varphi}{2\pi c_N} e^{-i\varphi N} |\Phi\varphi\rangle \quad \text{with} \quad |\Phi\varphi\rangle = e^{i\varphi N} |\Phi_0\rangle \]

EDF calculations

\[\frac{\langle \Phi_0 | \hat{H} | \Phi\varphi \rangle}{\langle \Phi_0 | \Phi\varphi \rangle} \rightarrow \mathcal{E}[0, \varphi] \]

\[\mathcal{E}^N \equiv \int_0^{2\pi} \frac{d\varphi}{2\pi c_N^2} e^{-i\varphi N} \mathcal{E}[0, \varphi] \langle \Phi_0 | \Phi\varphi \rangle \]

Connecting states

\[|\Phi_0\rangle = \prod (u_p + v_p a_p^+ a_p^+) |0\rangle \]

\[|\Phi\varphi\rangle = \prod (u_p + v_p e^{2i\varphi} a_p^+ a_p^+) |0\rangle \]

\[|\Phi\varphi\rangle = \tilde{c}_{01} \prod (\tilde{A}_{pp}^* + \tilde{B}_{pp}^* \tilde{\alpha}_p \tilde{\alpha}_p^+) |\Phi_0\rangle \]

with

\[\tilde{A}_{pp}^* = \tilde{A}_{pp} = e^{-i\varphi} (u_p^2 + v_p^2 e^{2i\varphi}) \]

\[\tilde{B}_{pp}^* = -\tilde{B}_{pp} = u_p v_p (e^{i\varphi} - e^{-i\varphi}) \]
Correction of spurious contributions

Identify problems and correct MR calculations without modifying current EDF strategy
Limited to integer power of densities (Generalization to k-body interactions)

Valid also for mixing Slater Determinants
Should correct divergences observed in Zdunczuk et al, nucl-th/0610118

Illustration for Particle Number Restoration
Confirm the intuition Bender and Duguet, Int.J. Mod. Phys. E16 (2007)