Understanding time-odd mean fields in covariant density functional theories

Anatoli Afanasjev
Mississippi State University

1. Brief overview of formalism
2. The effect of time-odd mean fields on
 - binding energies
 - odd-even mass scatterings
 - proton emitters
 - odd-odd nuclei
 - rotating systems
3. Conclusions.

In collaboration with Hazem Abusara
Covariant density functional (CDF) theory

The nucleons interact via the exchange of effective mesons → effective Lagrangian

\[\hat{h} = \frac{\delta E}{\delta \hat{\rho}} \]

\(E_{\text{RMF}}[\hat{\rho}, \phi_m] = \text{Tr}[(\alpha p + \beta m)\hat{\rho}] \pm \int \left[\frac{1}{2} (\nabla \phi_m)^2 + U(\phi_m) \right] d^3r + \text{Tr}[(\Gamma_m \phi_m)\hat{\rho}] \)

Density matrix \(\hat{\rho} \)

\(\phi_m \equiv \{ \sigma, \omega^\mu, \vec{\rho}^\mu, A^\mu \} - \text{meson fields} \)

Mean field

\(\hat{h} \phi_i = \varepsilon_i \phi_i \)

Eigenfunctions
\[V(\mathbf{r}) = g_\omega \omega(\mathbf{r}) + g_\rho \mathbf{i} \cdot \mathbf{\rho}(\mathbf{r}) + eA(\mathbf{r}) \]

\[S(\mathbf{r}) = g_\sigma \sigma(\mathbf{r}) \]

U - nucleonic potential

\[V \sim 350 \text{ MeV/nucleon} \]

\[S \sim -400 \text{ MeV/nucleon} \]

\[U \sim -50 \text{ MeV/nucleon} \]
Little attention has been paid to time-odd mean fields in CDF theory.

- **80th** - **magnetic moments**
 - and some other authors

- **90th** - **moments of inertia**
 - J. Konig and P. Ring, PRL 71, 3079 (1993)

- **00th** - **terminating states**
The Dirac equations for the fermions in the rotating frame
(one-dimensional cranking approximation)

\[\hat{h}_D = \alpha(-i\nabla - V(r)) + V_0(r) + \beta(m + S(r)) - \Omega_X \hat{J}_X \]

Magnetic potential

\[V(r) = g_\omega \omega(r) + g_\rho \tau_3 \rho(r) + e \frac{1 - \tau_3}{2} A(r) \]

Nuclear magnetism

-space-like components of vector mesons
-behaves in Dirac equation like a magnetic field

2. Klein-Gordon equations for mesons:

\[
\begin{align*}
\{-\Delta + m_\sigma^2\} \sigma(r) &= -g_\sigma [\rho_\sigma^n(r) + \rho_\sigma^p(r)] \\
&\quad -g_2 \sigma^2(r) - g_3 \sigma^3(r) \\
\{-\Delta + m_\omega^2\} \omega_0(r) &= g_\omega [\rho_\omega^n(r) + \rho_\omega^p(r)], \\
\{-\Delta + m_\omega^2\} \omega(r) &= g_\omega [j^n(r) + j^p(r)]
\end{align*}
\]

Two sources of time-reversal symmetry breaking:
- Coriolis term
- magnetic potential

“time-odd” mean fields in non-relativistic theory
Nuclear magnetism (NM) = Time-odd (TO) mean fields

Microscopic nature of nuclear magnetism

Dirac spinors

\[\psi_i(r) = \begin{pmatrix} f_i(r) \\ ig_i(r) \end{pmatrix} \]

Baryonic current: product of small and large components of Dirac spinor

\[j_i^B(r) = \psi_i^+(r) \hat{\alpha} \psi_i(r) = if_i^+(r) \hat{\sigma} g_i(r) - ig_i^+(r) \hat{\sigma} f_i(r) \]

Klein-Gordon equations

\[j_i^B(r) \rightarrow \omega(r), \rho(r) \rightarrow V(r) \rightarrow \text{Dirac eq.} \]

Pairing is neglected in the calculations

Single-particle states are characterized by signature

\[r = \pm i \]

Abbreviations:

NM – nuclear magnetism is included
WNM – nuclear magnetism is neglected
1. Dominance of the ω-meson in time-odd mean fields

\[
\begin{align*}
\{- \Delta + m^2_\omega \} \omega_0(r) &= g_\omega [\rho^n_v(r) + \rho^p_v(r)] \\
\{- \Delta + m^2_\omega \} \omega(r) &= g_\omega [j^n_v(r) + j^p_v(r)] \\
\{- \Delta + m^2_\rho \} \rho_0(r) &= g_\rho [\rho^n_v(r) - \rho^p_v(r)] \\
\{- \Delta + m^2_\rho \} \rho(r) &= g_\rho [j^n_v(r) - j^p_v(r)]
\end{align*}
\]

The contribution of the ρ-meson is very small in the majority of the cases.

Weak dependence on the parametrization.

BT states: time-odd mean fields are defined with ~15% accuracy

A.A., PRC 78, 054303 (08)
2. Impact of time-odd mean fields on binding energies of odd-mass nuclei: general features

1. NM always leads to additional binding

2. Additional binding due to NM is not clearly correlated with the structure of blocked state or deformation

Such state-dependence is seen in the effects of TO mean fields in Skyrme HF calculations, T. Duguet et al, PRC 65, 014310 (2001)
2. Impact of time-odd mean fields on binding energies of odd-mass nuclei: parametrization dependence

Additional binding due to NM (always attractive) only weakly depends on the RMF parametrization.

In Skyrme DFT calculations the time-odd mean fields can be both attractive and repulsive (sign even depends on mass region).
3. Neutron current distributions $j^n(r)$ in Ce isotopes: dependence on Ω of blocked state

Currents in 119Ce are given at arbitrary units. Currents for other nuclei are normalized to 119Ce by using factor F.
4. Breaking of Kramer’s degeneracy of single-particle states in the presence of time-odd mean fields

The energy splitting ΔE_{split} between different signatures of the s-p states

ΔE_{split} between different signatures of the s-p states

Signature splitting in the presence of TO mean field correlated with additional binding due to NM

$\superscript{119}\text{Ce}$
5. Microscopic mechanism of impact of TO fields on binding energies

\[E_{\text{tot}} = E_{\text{part}} + E_{\text{cm}} - E_{\sigma} - E_{\sigma\text{NL}} - E_{\omega}^{\text{TL}} - E_{\rho}^{\text{TL}} - E_{\omega}^{\text{SL}} - E_{\rho}^{\text{SL}} - E_{\text{Coul}}, \]

\[
E_{\text{part}} = \sum_{i}^{A} \varepsilon_i
\]

\[
E_{\sigma} = \frac{1}{2} g_{\sigma} \int d^3r \, \sigma(r) \left[\rho_s^p(r) + \rho_s^n(r) \right],
\]

\[
E_{\sigma\text{NL}} = \frac{1}{2} \int d^3r \left[\frac{1}{3} g_2 \sigma^3(r) + \frac{1}{2} g_3 \sigma^4(r) \right],
\]

\[
E_{\omega}^{\text{TL}} = \frac{1}{2} g_{\omega} \int d^3r \omega_0(r) \left[\rho_v^p(r) + \rho_v^n(r) \right],
\]

\[
E_{\omega}^{\text{SL}} = -\frac{1}{2} g_{\omega} \int d^3r \omega(r) \left[j^p(r) + j^n(r) \right],
\]

\[
E_{\rho}^{\text{TL}} = \frac{1}{2} g_{\rho} \int d^3r \rho_0(r) \left[\rho_v^n(r) - \rho_v^p(r) \right],
\]

\[
E_{\rho}^{\text{SL}} = -\frac{1}{2} g_{\rho} \int d^3r \rho(r) \left[j^n(r) - j^p(r) \right].
\]

<table>
<thead>
<tr>
<th>Quantity</th>
<th>$E_i^{W\text{NM}}$</th>
<th>$E_i^{\text{NM}} - E_i^{W\text{NM}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{part}</td>
<td>-2849.889</td>
<td>-0.41</td>
</tr>
<tr>
<td>E_{σ}</td>
<td>-17079.532</td>
<td>-2.231</td>
</tr>
<tr>
<td>$E_{\sigma\text{NL}}$</td>
<td>343.341</td>
<td>-0.017</td>
</tr>
<tr>
<td>E_{ω}^{TL}</td>
<td>14356.156</td>
<td>2.054</td>
</tr>
<tr>
<td>E_{ω}^{SL}</td>
<td>0.0</td>
<td>-0.124</td>
</tr>
<tr>
<td>E_{ρ}^{TL}</td>
<td>2.044</td>
<td>0.003</td>
</tr>
<tr>
<td>E_{ρ}^{SL}</td>
<td>0.0</td>
<td>-0.010</td>
</tr>
<tr>
<td>E_{Coul}</td>
<td>481.196</td>
<td>0.017</td>
</tr>
<tr>
<td>E_{cm}</td>
<td>-6.252</td>
<td>0.0</td>
</tr>
<tr>
<td>E_{tot}</td>
<td>-959.349</td>
<td>-0.104</td>
</tr>
</tbody>
</table>
6. Physical consequences: impact of time-odd mean field on odd-even mass staggering

The three-point indicator [56]

\[\Delta^{(3)}(N) = \frac{\pi N}{2} [B(N - 1) + B(N + 1) - 2B(N)] \]

\[\Delta_{TO}^{(3)}(N) = \Delta_{WTO}^{(3)}(N) + \delta E_{TO} \]

\[\delta E_{TO} = E_{NM} - E_{WNM} \]

\[\Delta E = 0.76N^{-0.60} \]

\[\Delta E = 0.38Z^{-0.55} \]
6. Physical consequences: impact of time-odd mean field on odd-even mass staggering (OES)

\[\Delta = \Delta_{WTO} = \frac{c}{A^\alpha} \]

Global trend when TO mean fields are included \((\Delta_{TO})\)

Effect on proton OES is smaller by a factor of 2

- Global trend when TO mean fields are included
- \(~5\%\)
- \(10-12\%\)

Figure from G.F. Bertsch et al, PRC 79, 034306 (2009)
7. Physical consequences: impact of time-odd mean field on properties of proton emitters

Schematic figure

Proton partial half-lives
(from S.Aberg et al, PRC 56, 1762 (97)

A → A': proton-unbound nucleus → proton bound

B → B': still proton-unbound, but proton partial-half live changes
7. Physical consequences: impact of time-odd mean field on properties of proton emitters

The impact of NM can be dramatic on the half-lives of proton emitters in lighter nuclei, since

(1) The general increase of additional binding due to NM and the magnitude of ΔE_{split} with decreasing mass

(2) The narrowing of the Q_p window with the decrease of mass due to lowering of the Coulomb barrier

Examples:

69Br – the change in proton energy of around 300 keV causes a change in the proton decay lifetime of 11 orders of magnitude

7B – variation of Q_p value between 3 to 50 keV changes half-lives by 30 orders of magnitude

[S.Aberg et al, PRC 56, 1762 (97)]
8. Impact of time-odd mean field on single-particle states in odd-odd nuclei

Neutron states are stronger affected by NM than proton states

Skyrme EDF: 1. Energy of $r=-1$ state is not affected by TO mean fields
2. $|E(r=+1) - E(r=-1)| \sim 2$ MeV

From Molique et al, PRC 61, 044304 (2000)
The image contains a table and a diagram discussing the properties of particles and their currents. The table lists various quantities with their corresponding values, including `E_{part}`, `E_\sigma`, `E_{\sigma NL}`, `E^{\omega}_{TL}`, `E^{\omega}_{\rho}`, `E^{\rho}_{TL}`, `E^{\rho}_{SL}`, `E_{Coul}`, `E_{cm}`, and `E_{tot}`. The differences in these values are also shown in the table.

The diagram illustrates the relationship between `\pi` and `\nu` currents, indicating that they move in opposite directions. The text in the image highlights that `\pi` and `\nu` currents in the same direction are shown with a green arrow, while those in opposite directions are shown with a red arrow.
8. Impact of time-odd mean fields on single-particle states in odd-odd nuclei

Signature separation is
- **large** when the proton and neutron currents are of the same order of magnitude
- **small** when the currents are much stronger in one subsystem than in another
9. Are time-odd mean fields enhanced at N=Z?

W. Satula, Proceedings of Nuclear Structure'98 conference, Gatlinburg, Tenn., USA
10. Time-odd mean fields in terminating bands

\[\pi (d_{5/2})^2 \nu (d_{5/2})^2 \]

Structure of the band with respect of \(^{16}\text{O} \) core:

\[\pi (d_{5/2})^2 \nu (d_{5/2})^2 \]

20Ne: the band terminating at \(I=8^+ \)

The aligned single-particle angular momentum \(\langle j_x \rangle \) at band termination does not depend on presence or absence of nuclear magnetism.

Rotational frequency \(\Omega \) (MeV)

Single-proton energies \(\varepsilon \) (MeV)

The aligned single-particle angular momentum \(\langle j_x \rangle \) at band termination does not depend on presence or absence of nuclear magnetism.
The maximum spin which can build within the configuration is the same in the calculations with and without nuclear magnetism.

Additional binding energy at band termination due to time-odd mean fields depends on single-particle configuration: It is maximum at the terminating state for a given configuration.
\(\pi (d_{3/2})^{-1} (f_{7/2})^{3} \nu (f_{7/2})^{4} \)

\[E \left[(d_{3/2}^{-1} f_{7/2}^{n+1}) - (f_{7/2}^{n}) \right] \]

Energy differences

F.Brandolini et al,
PRC 70, 034302 (2004)
10. Time-odd mean fields in terminating bands

\[E_{TO} = |E^{NM} - E^{WNM}| \]

\(l_{max} \) increases with \(n \)

Time-odd mean fields are defined with \(~15\%\) accuracy in the non-linear RMF parametrizations.

A.A., PRC 78, 054303 (08)
11. Are there experimental data which will allow to fix time-odd mean fields precisely

1. **magnetic moments**
 - **NO**, complex quantity (meson-exchange corrections, coupling to magnetic resonances …)

2. **moments of inertia**
 - **PARTIALLY**, requires systematic calculations

3. **- terminating states**
 - related to moments of inertia **NOT LIKELY**
Conclusions

Time-odd mean fields (nuclear magnetism)
- are dominated by ω-meson
- are always attractive in odd-mass nuclei (additional binding due to NM)
- show weak dependence on the parametrization for the non-linear parametrizations
- should be taken into account when the strength of pairing is defined using odd-even mass differences
- affect the properties of proton emitters
- odd-odd nuclei – more complicated and can be more attractive than in odd-mass nuclei
 - enhanced when proton and neutron occupy the same single-particle states
- should be taken into account for mass tables

Outlook: 1. manuscript submitted to PRC
2. systematic study of rotating nuclei, density-dependent meson couplings and scalar-vector couplings
 - manuscript in preparation