Nonlinear screening in graphene nanostructures

Michael Fogler, UCSD
Acknowledgements

Work in collaboration with:
- L. Glazman (Yale)
- D. Novikov (Yale)
- B. Shklovskii (U MN)
- Matt Zhang (UCSD)

Funding
- NSF, ACS UCSD
Quasi-relativistic ("Dirac") fermions

\[E(p) = \pm \nu |p| \]

\[\nu \approx c/300 \]

300 times slower than light

\[E > 0 \text{ "electrons"} \]
\[E < 0 \text{ "positrons" or "holes"} \]

Fermi surface shrinks to a single point
Graphene: QED in a pencil trace?

Similarities
- Linear spectrum
- Spin-like degree of freedom
- Chirality

Differences
- 2+1D instead of 3+1D
- No mass
- Interactions are strong
- No retardation ($\nu < c$)
- Doping, disorder, phonons
-
Klein paradox (1929)

An example of what “QED in a pencil trace” may test

- Naïve calculation gives transmission > 1 ??
 - Source of mistake: for the negative-energy states
 (group velocity) = - (quasi-particle velocity)

The result of the correct calculation: transmission < 1 and increases with the barrier height

- Not exactly paradoxical in 2007 but still unusual ...
Supercritical charge: atomic collapse and creation of antimatter

Energy

\[2mc^2 \]

\[Z\alpha < C \sim 1 \]

subcritical

Schwinger, 1950’s
Zeldovich, 1970’s

\[Z\alpha > C \]
Fine-structure constant in graphene

\[\alpha = \frac{e^2}{\hbar c} \approx \frac{1}{137} \]

\[\alpha_{\text{Graphene}} = \frac{e^2}{\kappa \hbar \nu} \approx 0.9 \]

\(\kappa = 2.3 \) dielectric constant

SiO₂
High-k dielectric: weak interactions

\[\alpha = \frac{e^2}{\kappa \hbar \nu}, \quad \kappa = \text{dielectric constant} \]

If \(\kappa \gg 1 \), \(\alpha \ll 1 \)

HfO\(_2\), water, …
Our work – nonlinear screening in graphene

References: arXiv:0707.1023 (PRB 2007), 0708.0892, and 0710.2150
What is screening?
Linear screening

Poor screening $\varepsilon(q) \approx 1$
- External charge $\sim \sin qx$

Good screening $\varepsilon(q) \gg 1$
- $r_s = \frac{1}{\alpha k_F}$ screening length

Guinea et al.
Ando
Das Sarma et al.
Why would screening be nonlinear in graphene?

- Lots of carriers: good screening
- No carriers: no screening!
- Lots of carriers: good screening
Nonlinear screening

Higher electron density, better screening
Lower density, worse screening
Summary of possible screening regimes

<table>
<thead>
<tr>
<th>Screening</th>
<th>Poor</th>
<th>Poor</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid approximation</td>
<td>N/A (Dirac eq.)</td>
<td>Thomas-Fermi</td>
<td>Classical electrostatics</td>
</tr>
</tbody>
</table>

\[r_s = \frac{\lambda_F}{\alpha} \]

If \(\alpha \ll 1 \)
Graphene p-n junction

Electrostatic potential of the gates induces a gradually varying charge density profile, which changes sign.

- The back-gate controls the overall carrier density
- The top gate determines the density difference
Recent experiments

- Resistance of a graphene p-n junction is only a few kΩ
- Qualitatively explained by the gapless Dirac spectrum
- Quantitative theory needed

Williams et al., Science 317, 638 (2007)
B. Huard et al., PRL 98, 236803 (2007)
B. Ozyilmaz et al., arXiv/cond-mat:0705.3044
Klein paradox (1929)

An example of what “QED in a pencil trace” may test

- Naïve calculation gives transmission > 1 ??
 - Source of mistake: for the negative-energy states
 (group velocity) = - (quasi-particle velocity)

The result of the correct calculation: transmission < 1 and
increases with the barrier height

– Not exactly paradoxical in 2007 but still unusual ...
Veselago lensing

Cheianov et al. 2007
Electric field in the junction

- Conductance is determined by the field strength at the interface.
- A naïve estimate (Cheianov 06) assumed uniform field:

 In reality, electric field is:
 - *suppressed* away from junction where screening is good
 - *enhanced* near the interface where screening is poor
Nonlinear screening, case \(\alpha \sim 1 \)

- Electron density is highly non-uniform, how to compute the screened potential?
- It is charge density that must be found first!
- Screened potential \(V(x) \) follows from the density of states
- Three-line derivation, next
Nonlinear screening, $\alpha \sim 1$

- **Charge density**
 \[\rho(x) = \rho' x \]

- **Potential, T-F approx.**
 \[eV(x) = \mu(x) = \hbar \nu \sqrt{\rho(x)} \propto \sqrt{x} \]

- **Electric field**
 \[F = -V'(x) \propto 1/\sqrt{x} \]

- **Cut the divergence**
 \[x_* = \lambda_F(x_*) \]
Numerical results

3 / 16 / 1

2) ' (0 . 1

\(\rho_\alpha e hR \)

(a)

\(\alpha = 1 \)
\(\alpha = 0.1 \)

\(x/D \)

Density

(b)

\(\alpha = 1 \)
\(\alpha = 0.1 \)

\(x/D \)

Electric field

(c)

\(\alpha = 0.1 \)

\(x/D \)

Density

Junction resistance

\[
R = 1.0 \frac{h}{e^2 \alpha^{-1/6} (\rho')^{-1/3}}
\]
Results

- Previous results for transmission through p-n junction are off by a (parametrically) large factor (~2-10, in practice)
- Our new results bring theory and experiments in a much better agreement
- Including disorder effects the agreement can be made quantitative (next slide)
Disorder in p-n junction
Coulomb impurity in graphene
Why the Coulomb impurity problem?

- Uncontrolled charged impurities in the substrate
- Intentional doping / gating
- Intriguing analogy to atomic collapse and vacuum breakdown in QED

\[\alpha_{\text{Graphene}} \approx 0.9 > \alpha_c ? \]
Supercritical charge: atomic collapse and creation of antimatter

\[E = 2mc^2 \]

\(Z\alpha < 1 \) subcritical

\(Z\alpha > 1 \)

Schwinger, 1950’s
Zeldovich, 1970’s
Critical charge in graphene

\[Z_c \alpha \sim \frac{1}{2} \]

\[\alpha_{\text{Graphene}} \approx 0.9 \therefore Z_c \sim 1? \]

Khalilov (1998)
Novikov
Shytov, Levitov
Castro-Neto

...
Critical charge in graphene: previous work

Subcritical Z

Electron density

$$n(r) \sim \alpha \delta(r)$$

$$V(r) \sim \frac{1}{r}$$

Supercritical Z

Electron density

$$n(r) \sim \frac{1}{r^2 \ln^2 r}$$

$$V \sim \frac{1}{r \ln r}$$

DiVincenzo, Katsnelson, Shytov, Castro-Neto
Problem with previous work: range of validity

- Short-range cutoff: bandwidth
- Long-range: zero mass
- For $\alpha Z \sim 1$ both cutoffs \sim lattice constant
Our work – “hyper"critical charge

M.F., Novikov, Shklovskii, PRB (2007)

\[\alpha Z \gg 1 \]
New result for “vacuum polarization” around a large Coulomb charge

- New universal result for the structure of the supercritical core
- For $\alpha = 1$ this core “squeezes out” the regimes discussed in previous literature
- Such regimes return if $\alpha << 1$ (next slide)
Hypercritical impurity, small α
How to realize large-Z charge?

STM / AFM tip