Status of the ThO eEDM search experiment

Amar Vutha
Yale University

INT Workshop, Seattle

October 2008
ACME Collaboration

- Yale University
 - David DeMille
 - Amar Vutha

- University of Maryland
 - Wesley Campbell

- Harvard University
 - John Doyle
 - Gerald Gabrielse
 - Yulia Gurevich
 - Nicholas Hutzler
Overview

- Limit from Tl atomic beam: $d_e \leq 1.6 \times 10^{-27} \text{e cm}^1$
- Projection for ThO beam: $\delta d_e \simeq 10^{-30} \text{e cm} \sqrt{\text{day}} \text{ (stat)}$

- Why do we think this is possible?

1B C Regan et al, PRL 88, 071805 (2002)
Cartoon version of an eEDM search

\[\Delta \omega = 2 \ d_e \mathcal{E}_{\text{eff}} \]

- Look for “extra” spin precession that is correlated with the electric field, \(\mathcal{E}_{\text{eff}} \)
Why ThO molecules?

Sensitivity limit

- \(\delta \omega \geq \frac{1/\tau}{\sqrt{N_{tot}}} \)
- \(\Rightarrow \delta d_e \gtrsim \frac{1/\tau}{2E_{eff}\sqrt{\dot{N}T_{tot}}} \)

Statistical sensitivity with ThO

- Large effective electric field, \(E_{eff} \sim 10^{11} \text{ V/cm} \)
- Large coherence time, \(\tau \geq 1.7 \text{ ms} \) (measured)
- Large count rate, \(\dot{N} \sim 5 \times 10^7 / \text{s} \) (projected)

(Simplified) level structure of the ThO molecule

- eEDM enhancement is in the paramagnetic H state

- Number of ideal properties for an eEDM experiment in a beam
Measurement of molecular beam flux $\rightarrow \dot{N}$

$\dot{N} = N_{\text{beam}} \approx 10^{13} / \text{sr/pulse}$
Lifetime of the H state \longrightarrow coherence time, τ

- Radiative lifetime, $\tau \geq 1.7 \text{ ms}$
Advantages of ThO

Statistical sensitivity

- Large eEDM enhancement factor ($\sim 4 \times \text{YbF, PbO}$)
- Long-lived metastable state ($\tau \sim 2 \text{ ms}$)
- Demonstrated production of cold molecules into a beam

Systematic error rejection

- Small magnetic moment ($^3\Delta_1$) ⇒ magnetic noise insensitive
- Large tensor Stark shifts (\sim other eEDM molecules)
- Ω-doublets to reject many systematics (geometric phase !)

Experimentally well-behaved

- ThO spectroscopy is well-known, all relevant transitions only involve diode lasers !
- Blue-shifted fluorescence, compared to backgrounds
Summary: eEDM search with ThO molecules

Based on measured quantities, the projected sensitivity is
\[\delta d_e \simeq 10^{-30} \text{e cm } \sqrt{\text{day}} \text{ (stat)} \]

ThO has a number of features to suppress/reject known systematic effects to below this level.

Current status

- Construction of molecular beam source & lasers + electronics
- Design of interaction region
A more detailed schematic of the experiment
Cryogenic source: intense beam of cold ThO molecules

- Cryogenic ThO beam
- Supersonic YbF beam

<table>
<thead>
<tr>
<th></th>
<th>Cryogenic ThO beam</th>
<th>Supersonic YbF beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecules, N_{ground}</td>
<td>2×10^{12}/sr/pulse</td>
<td>1.4×10^{9}/sr/pulse</td>
</tr>
<tr>
<td>Velocity, $v_{∥}$</td>
<td>150 m/s</td>
<td>300 m/s</td>
</tr>
</tbody>
</table>

\[\frac{1}{\tau \sqrt{N}} \] is smaller by a factor of ~ 100 for a cold ThO beam

Distinguishing geometric phases from an EDM