The Qweak Collaboration

¹Spokespersons
²Project Manager

College of William and Mary, University of Connecticut, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, University of Wisconsin, Hendrex College, Louisiana Tech University, University of Manitoba, Massachusetts Institute of Technology, Thomas Jefferson National Accelerator Facility, Virginia Polytechnic Institute & State University, TRIUMF, University of New Hampshire, Yerevan Physics Institute, Mississippi State University, University of Northern British Columbia, Cockroft Institute of Accelerator Science and Technology, Ohio University, Hampton University, University of Winnipeg, University of Virginia, George Washington University, Syracuse University, Idaho State University, University of Connecticut, Christopher Newport University
Experiment Overview

- Scheduled for 223 days at a nominal energy of 1.165 GeV. Begin installation late ~2009 with final run period ending ~May 2012.

- Science that Jlab is uniquely positioned to conduct. >100 man years have been invested to date.

- 7 graduate students on board to date. 8 faculty planning sabbaticals.

- Precision measurement of the proton’s weak charge in the simplest system. Parity violation in e-p scattering at $Q^2 = 0.026 \text{ (GeV/c)^2}$.

 ✓ Hadronic background determined from existing PVES data!

 - Determine the weak charge of the proton to 4%
 - Extract $\sin^2\theta_W$ to 0.3%
 - Completes the set of PV measurements needed to determine the C_{1u} and C_{1d} quark coupling constants.
 - Set limit on parity violating new physics at energy scale of ~2.3 TeV.

- Measurement is unlikely to be repeated in the foreseeable future - so there is a need to push the precision envelope.
Extraction of Q^p_{weak}

The Q_{weak} experiment measures the parity-violating analyzing power $A_z = \varepsilon / P_z$

$$A_z = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \simeq -3 \times 10^{-7}$$

$$A_z \xrightarrow{Q^2 \to 0, \theta \to 0} \frac{-G_F}{4\pi\alpha\sqrt{2}} [Q^2 Q^p_{\text{weak}} + Q^4 B(Q^2)]$$

Contains $G^\gamma_{E,M}$ and $G^Z_{E,M}$, Extracted using global fit of existing PVES experiments!

$$Q^p_{\text{weak}} = 1 - 4\sin^2 \theta_W \sim 0.072 \text{ (at tree level)}$$

- Q^p_{weak} is a well-defined experimental observable
- Q^p_{weak} has a definite prediction in the electroweak Standard Model
Nucleon Structure Contributions to the Analyzing Power

\[A = A_{Q^2} + A_{\text{hadronic}} + A_{\text{axial}} \]
\[= -0.19 \text{ ppm} - 0.09 \text{ ppm} - 0.01 \text{ ppm} \]

hadronic:
(31% of asymmetry)
- contains \(G^{\gamma}_{E,M} G^{Z}_{E,M}\)
Constrained by HAPPEX, \(G^0\), MAMI PVA4

axial:
(4% of asymmetry)
- contains \(G^{e}_{A}\)
has large electroweak radiative corrections.
Constrained by \(G^0\) and SAMPLE

Constraints on \(A_{\text{hadronic}}\) from other Measurements
\[A_{\text{hadronic}} = Q^4 B(Q^2) \]

Projected Hadronic Uncertainties from Planned Experiments

Quadrature sum of expected
\(\Delta A_{\text{hadronic}} = 1.5\%\) and \(\Delta A_{\text{axial}} = 1.2\%\) errors contribute \(\sim 1.9\%\) to error on \(Q^2_{W}\)
Use global fit to extract slope at 0° and $Q^2 = 0$.
Anticipated Q^p_W Weak Uncertainties

<table>
<thead>
<tr>
<th></th>
<th>$\Delta A_{phys}/A_{phys}$</th>
<th>$\Delta Q^p_{weak}/Q^p_{weak}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical (2200 hours production)</td>
<td>1.8%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Systematic:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadronic structure uncertainties</td>
<td>--</td>
<td>1.9%</td>
</tr>
<tr>
<td>Beam polarimetry</td>
<td>1.0%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Absolute Q^2 determination</td>
<td>0.5%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>0.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Helicity-correlated Beam Properties</td>
<td>0.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2%</td>
<td>4.1%</td>
</tr>
</tbody>
</table>

4% error on Q^p_W corresponds to $\sim 0.3\%$ precision on $\sin^2\theta_W$ at $Q^2 \sim 0.03$ GeV2

$$Q^p_W(p) = [\rho_{NC} + \Delta_e][1 - 4\sin^2\hat{\theta}_W(0) + \Delta_e']$$

$$+ \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}.$$

(Erler, Kurylov, Ramsey-Musolf, PRD 68, 016006 (2003))

$Q^p_W = 0.0716 \pm 0.0006$ theoretically

0.8% error comes from QCD uncertainties in box graphs, etc.
All Data & Fits Plotted at 1 σ

\[Q_{1w}^u = -2(2C_{1u} + C_{1d}) \]

HAPPEx: H, He
G0: H,
PVA4: H
SAMPLE: H, D
The Basic Qweak Apparatus

- Build on JLab expertise with parity quality polarized beams.
- Dual Moeller & Compton polarimetry.
- Use (resistive) toroidal magnet to isolate the elastics from inelastics and neutral background.
- Use quartz Cerenkov detectors:

 - Rad hard (stable) and rejection of non-relativistic events.
 - Low gain PMT’s operated in linear current integrating mode.
 - Precision 18-bit ADC rapid sampling (equivalent to 26 bit).
- Counting mode (sub-nA beam currents) for Q^2 calibrations.
- Worlds highest power LH$_2$ cryogenic target (~2.5 kW).
- Rapid flipping 125 Hz of beam helicity (perhaps as high as 500 Hz) to suppress beam systematics and potential target “boiling noise”.
Schematic of the Q^p_{Weak} Experiment

- Elastically Scattered Electron
- Region III Drift Chambers
- Toroidal Magnet
- Region II Drift Chambers
- Region I GEM Detectors
- Primary Collimator with 8 openings
- 35 cm Liquid Hydrogen Target
- Polarized Electron Beam, 1.165 GeV, 180 µA, $P \sim 85\%$

Region I, II and III detectors are for Q^2 measurements at low beam current.
Q² Acceptance and Efficiency Mapping of Quartz Bars

(I_{beam} \sim 100 \text{ pA to 1 nA})

Collimator 1
Collimator 3
Defining Collimator

e^- beam
target

Quartz Cherenkov bar
(insensitive to non-relativistic particles)

Location Region 3
2 Vertical Drift chambers

Location Region 2
2 Horizontal Drift chambers

GEM
Gas Electron Multiplier

Location Region 1

Region 1 + 2 chambers: Absolute Q² acceptance
Region 3 chamber: Efficiency map of quartz detectors

Expected Q² distribution

![Graph showing Q² distribution]
Main Detector

Toroidal Spectrometer
Produces 8 Beam Spots

Each focus is ~2 meters long

- 8 fused silica radiators
 200 cm x 18 cm x 1.25 cm
- Spectrosil 2000
 Rad-hard, low luminescence (expensive)
- ~800 MHz e⁻ per bar
- Light collection by TIR
 5 Angstroms rms polish
 (even more expensive)
- 5” PMTs with gain = 2000
- S20 photocathodes ($I_k = 3 \text{ nA}$)
- Current mode readout ($I_a = 6 \mu\text{A}$)
Collimator 3
In its frame

Collimator 1
Photo shows status after 2 openings cut.
(It is now fully machined)
Custom 18 bit ADC

Light Output Uniformity of Quartz Bar

All detector electronics / quartz / tubes at JLab

20 p.e. per event
50,000 e per event
800 MHz

x 2500

1 MΩ I-V

6.4 µA

6.4 V

in shielding

outside hall

Custom 18 bit ADC

Run 182: Channel 8, Input voltage = 4.823 V

Beam Left-Right Hit Location [cm]

Number of photoelectrons

Number of quartets

Quartet asymmetry in channel 8 ADC readout
CAD Drawing – (only partial shielding shown)
CAD Drawing – (only partial shielding shown)
QTOR Pre-Ops Tests at MIT-Bates

Attaching a Coil to the Support Structure

Assembled Magnet with Mapper

Limited duration 9,500 Amp powered test completed and mapping at 4000 amps underway at MIT/Bates.
3 NSF-funded Tracking Sub-systems to Measure Acceptance, Backgrounds, Q^2, etc.

Front-end Rotator and GEM detector
LaTech Idaho State

Front-end HDC’s – VPI (full-scale region II chamber)

VDC Construction at W&M (Foils & HV planes completed)
2.5 kW LH$_2$ Cryotarget Under Construction

- Fluid dynamics simulation code used in the design effort to minimize “boiling noise” risk - in the liquid volume or at the windows.

- Fast helicity reversal 125 Hz up to 500 Hz. Common mode rejection of “boiling” noise increases as helicity reversal/readout rate is raised.

- First cold test of target pump conducted – only partially successful because correct cryo-bearing was not available.
Beam Polarimetry: Need 1% at 180 µA

- Existing “saturated Fe” Moeller polarimeter achieves ±0.5% to ±1.0% accuracy, but at currents well below 180 µA and the measurement is invasive.
- Jlab has developed a low duty factor “kicker” technique to allow Moeller to operate at ~40 µA, with plans to push towards higher currents.

1 µm Fe foil for good real/random ratio, low duty factor to minimize heating/depolarization.

- Compton polarimeter (1 to 11 GeV) construction. Design goal is ±1% absolute accuracy.
- **Cross-calibrate against existing Moeller** to save time and simplify initial operation at ~1 GeV during the Qweak experiment.
Technical Progress Highlights

1. Successfully obligated all FY08 procurements.

1. Detailed “draft” installation plan developed.

2. Region 3 rotator assembly to begin this November in test lab.

3. Placement of chicane magnet order eminent at MIT/Bates

1. Target:

 Crucial, critical path pump test imminent.
 Heater designs finished.

1. VDC wire stringing and HV foil mounting finished.

1. Primary detector gluing method established.

2. QTOR (magnet) & power supply tested to full current + 10%.
 Mapping underway.