Latest Results on ρ and δ from Muon Decay

Robert E. Tribble
Texas A&M University

for the TWIST Collaboration
Muon decay spectrum

The energy and angle distributions of positrons following polarized muon decay obey the spectrum:

\[
\frac{d^2\Gamma}{x^2dx\,d(\cos\theta)} \propto (3 - 3x) + \frac{2}{3}\rho(4x - 3) + 3\eta\frac{x_0}{x}(1 - x) \\
+ P_{\mu}\xi_0\xi \cos\theta \left[(1 - x) + \frac{2}{3}\delta(4x - 3)\right]
\]

where \(x = \frac{E_e}{E_{e,\text{max}}} \)

[Radiative corrections not included]
Muon decay matrix element

- Most general local, derivative-free, lepton-number conserving muon decay matrix element:

\[M = \frac{4G_F}{\sqrt{2}} \sum_{\gamma=S,V,T} g_{\epsilon\mu}^\gamma \langle \bar{\epsilon}_\epsilon | \Gamma_\gamma | (\nu_\epsilon)_n \rangle \langle (\bar{\nu}_\mu)_m | \Gamma_\gamma | \mu_\mu \rangle \]

- In the Standard Model, \(g_{LL}^V = 1 \), all others are zero

- Pre-TWIST global fit results (all 90% c.l.):

| \(|g_{RR}^S| < 0.066 \) | \(|g_{RR}^V| < 0.033 \) | \(|g_{RR}^T| \equiv 0 \) |
|---|---|---|
| \(|g_{LR}^S| < 0.125 \) | \(|g_{LR}^V| < 0.060 \) | \(|g_{LR}^T| < 0.036 \) |
| \(|g_{RL}^S| < 0.424 \) | \(|g_{RL}^V| < 0.110 \) | \(|g_{RL}^T| < 0.122 \) |
| \(|g_{LL}^S| < 0.550 \) | \(|g_{LL}^V| > 0.960 \) | \(|g_{LL}^T| \equiv 0 \) |
Muon decay parameters and coupling constants

$$\rho = \frac{3}{4} - \frac{3}{4} \left[|g_{RL}^V|^2 + |g_{LR}^V|^2 + 2 |g_{RL}^T|^2 + 2 |g_{LR}^T|^2 \right] + \Re \left(g_{RL}^S g_{RL}^{T*} + g_{LR}^S g_{LR}^{T*} \right)$$

$$\eta = \frac{1}{2} \Re \left[g_{RR}^V g_{LL}^{S*} + g_{LL}^V g_{RR}^{S*} + g_{RL}^V (g_{LR}^{S*} + 6 g_{LR}^{T*}) + g_{LR}^V (g_{RL}^{S*} + 6 g_{RL}^{T*}) \right]$$

$$\xi = 1 - \frac{1}{2} |g_{LR}^S|^2 - \frac{1}{2} |g_{RR}^S|^2 - 4 |g_{RL}^V|^2 + 2 |g_{LR}^V|^2 - 2 |g_{RR}^V|^2$$

$$+ 2 |g_{LR}^T|^2 - 8 |g_{RL}^T|^2 + 4 \Re \left(g_{LR}^S g_{RL}^{T*} - g_{RL}^S g_{LR}^{T*} \right)$$

$$\xi \delta = \frac{3}{4} - \frac{3}{8} |g_{RR}^S|^2 - \frac{3}{8} |g_{LR}^S|^2 - \frac{3}{2} |g_{RR}^V|^2 - \frac{3}{4} |g_{RL}^V|^2 - \frac{3}{4} |g_{LR}^V|^2$$

$$- \frac{3}{2} |g_{RL}^T|^2 - 3 |g_{LR}^T|^2 + \frac{3}{4} \Re \left(g_{LR}^S g_{RL}^{T*} - g_{RL}^S g_{LR}^{T*} \right)$$

SM

$$\rho = 0.7518 \pm 0.0026 \quad 3/4$$

$$\eta = -0.007 \pm 0.013 \quad 0$$

Prior to **TWIST**

$$P_{\mu}^\xi = 1.0027 \pm 0.0079 \pm 0.0030 \quad 1$$

$$\delta = 0.7486 \pm 0.0026 \pm 0.0028 \quad 3/4$$

$$P_{\mu}^\xi(\xi \delta / \rho) > 0.99682 \; (90\% \; c.l.) \quad 1$$

Robert Tribble – INT, October, 2008
Goal of *TWIST*

- Search for new physics that can be revealed by **order-of-magnitude improvements** in our knowledge of ρ, δ, and $P_\mu \xi$

Two examples

- Model-independent limit on muon handedness

\[
Q^\mu_R = \frac{1}{2} \left[1 + \frac{1}{3} \xi - \frac{16}{9} \xi \delta \right]
\]

- Left-right symmetric models

\[
\frac{3}{4} - \rho = \frac{3}{2} \xi^2 \quad 1 - P_\mu \xi = 4 \left(\xi^2 + \xi \left(\frac{M_L}{M_R} \right)^2 + \left(\frac{M_L}{M_R} \right)^4 \right)
\]

- …..
What is required?

Must:
- Determine spectrum shape
 -- All three parameters
- Understand sources of muon depolarization
 -- P_μ and ξ come as a product
- Measure forward-backward asymmetry
 -- For $P_\mu \xi$ and δ

to within a few parts in 10^4

Robert Tribble – INT, October, 2008
Surface muon beam
Detector array

- 56 low-mass high-precision planar chambers symmetrically placed around thin target foil (DME, CF$_4$/Isobutane)
- Measurement initiated by single thin scintillation counter at entrance to detector
- Beam stop position controlled by variable He/CO$_2$ gas degrader

Yu.Davydov et al. NIM A461(2001)68
R.Henderson et al. NIM A548(2005)306

Robert Tribble – INT, October, 2008
Typical events

• Use pattern recognition (in position and time) to sort hits into tracks, then fit to helix

• Must also recognize beam positrons, delta tracks, backscattering tracks
Physics data sets

- **Fall 2002**
 - Test data-taking procedures and develop analysis techniques
 - First physics results – ρ and δ
 - Graphite-coated Mylar target not suitable for $P_{\mu \xi}$

- **Fall 2004**
 - Al target (70 μm) and Time Expansion Chamber enabled first $P_{\mu \xi}$ measurement
 - Improved determinations of ρ and δ recently published

- **2006-07**
 - Ag and Al target data
 - Larger data sets and better beam characterization
 - Achieve ultimate **TWIST** precision for ρ, δ, and $P_{\mu \xi}$
Analysis method

• Extract energy and angle distributions for data:
 – Apply (unbiased) cuts on muon variables.
 – Reject fast decays and backgrounds.
 – Calibrate e^+ energy to kinematic end point at 52.83 MeV.

• Fit to identically derived distributions from simulation:
 – GEANT3 geometry contains virtually all detector components.
 – Simulate chamber response in detail.
 – Realistic, measured beam profile and divergence.
 – Extra muon and beam positron contamination included.
 – Output in digitized format, identical to real data.
2-d momentum-angle spectrum

Acceptance of the **TWIST** spectrometer

Robert Tribble – INT, October, 2008
Fitting the data distributions

• Decay distribution is linear in ρ, η, $P_{\mu \xi}$, and $P_{\mu \xi \delta}$, so a fit to first order expansion is exact.

• Fit data to simulated (MC) base distribution with hidden assumed parameters,

$$\lambda_{MC} = (\rho, \eta, P_{\mu \xi}, P_{\mu \xi \delta}, P_{\mu \xi \delta})$$

plus MC-generated distributions from analytic derivatives, times fitting parameters ($\Delta \lambda$) representing deviations from base MC. (η is now fixed to global analysis value).

(graphic thanks to Blair Jamieson)
Validating the Monte Carlo with “upstream stops”
Fitting the 2002 data to determine ρ and δ

Normalized residuals \[\frac{(\text{Data-Fit})}{\text{sigma}}\] of the 2-d momentum-angle fit

Fit describes the data well, even when extrapolated far outside the fiducial region

Angle-integrated results

Robert Tribble – INT, October, 2008
First *TWIST* results for ρ and δ

- From Fall, 2002 run:
 - $\rho = 0.75080 \pm 0.00032$ (stat) ± 0.00097 (syst) ± 0.00023 (η)

 J. Musser et al., PRL *94*, 101805

 - $\delta = 0.74964 \pm 0.00066$ (stat) ± 0.00112 (syst)

 A. Gaponenko et al., PRD *71*, 071101
Systematics in the first measurements

The same effects tend to dominate the systematic uncertainties for both ρ and δ.

TABLE II. Contributions to the systematic uncertainty in ρ.
Average values are given for those denoted (av), which are considered set dependent when performing the weighted average of the data sets.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber response (av)</td>
<td>± 0.00051</td>
</tr>
<tr>
<td>Stopping target thickness</td>
<td>± 0.00049</td>
</tr>
<tr>
<td>Positron interactions</td>
<td>± 0.00046</td>
</tr>
<tr>
<td>Spectrometer alignment</td>
<td>± 0.00022</td>
</tr>
<tr>
<td>Momentum calibration (av)</td>
<td>± 0.00020</td>
</tr>
<tr>
<td>Theoretical radiative corrections [12]</td>
<td>± 0.00020</td>
</tr>
<tr>
<td>Track selection algorithm</td>
<td>± 0.00011</td>
</tr>
<tr>
<td>Muon beam stability (av)</td>
<td>± 0.00004</td>
</tr>
<tr>
<td>Total in quadrature</td>
<td>± 0.00093</td>
</tr>
<tr>
<td>Scaled total</td>
<td>± 0.00097</td>
</tr>
</tbody>
</table>

Systematic uncertainties typically determined from data sets with a possible problem exaggerated or by MC done with an exaggerated ‘defect’ put into detector.

TABLE II. Contributions to the systematic uncertainty for δ.
Average values are denoted by (ave), which are considered set-dependent when performing the weighted average of data sets.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer alignment</td>
<td>± 0.00061</td>
</tr>
<tr>
<td>Chamber response (ave)</td>
<td>± 0.00056</td>
</tr>
<tr>
<td>Positron interactions</td>
<td>± 0.00055</td>
</tr>
<tr>
<td>Stopping target thickness</td>
<td>± 0.00037</td>
</tr>
<tr>
<td>Momentum calibration (ave)</td>
<td>± 0.00029</td>
</tr>
<tr>
<td>Muon beam stability (ave)</td>
<td>± 0.00010</td>
</tr>
<tr>
<td>Theoretical radiative corrections [9]</td>
<td>± 0.00010</td>
</tr>
<tr>
<td>Upstream/downstream efficiencies</td>
<td>± 0.00004</td>
</tr>
</tbody>
</table>
Global Analysis

Use general form of interaction:

\[M = \frac{4G_F}{\sqrt{2}} \sum_{\gamma=S,V,T} g_{\epsilon \mu}^\gamma \begin{pmatrix} \bar{e}_\epsilon \mid \Gamma_\gamma \mid (\nu_e)_n \end{pmatrix} \begin{pmatrix} (\bar{\nu}_\mu)_m \mid \Gamma_\gamma \mid \mu_\mu \end{pmatrix} \]

Global Analysis

\[Q_{RR} = \frac{1}{4} |g_{RR}^S|^2 + |g_{RR}^V|^2, \]
\[Q_{LR} = \frac{1}{4} |g_{LR}^S|^2 + |g_{LR}^V|^2 + 3|g_{LR}^T|^2, \]
\[Q_{RL} = \frac{1}{4} |g_{RL}^S|^2 + |g_{RL}^V|^2 + 3|g_{RL}^T|^2, \]
\[Q_{LL} = \frac{1}{4} |g_{LL}^S|^2 + |g_{LL}^V|^2, \]
\[B_{LR} = \frac{1}{16} |g_{LR}^S + 6g_{LR}^T|^2 + |g_{LR}^V|^2, \]
\[B_{RL} = \frac{1}{16} |g_{RL}^S + 6g_{RL}^T|^2 + |g_{RL}^V|^2, \]
\[I_\alpha = \frac{1}{4} \left[g_{LR}^V (g_{RL}^S + 6g_{RL}^T)^* + (g_{RL}^V)^* (g_{LR}^S + 6g_{LR}^T) \right] \]
\[= (\alpha + i\alpha')/2A, \]
\[I_\beta = \frac{1}{2} \left[g_{LL}^V (g_{RR}^S)^* + (g_{RR}^V)^* g_{LL}^S \right] = -2(\beta + i\beta')/A \]

Constraints:

\[0 \leq Q_{\epsilon\mu} \leq 1, \quad \text{where } \epsilon, \mu = R, L, \]
\[0 \leq B_{\epsilon\mu} \leq Q_{\epsilon\mu}, \quad \text{where } \epsilon\mu = RL, LR, \]
\[|I_\alpha|^2 \leq B_{LR} B_{RL}, \quad |I_\beta|^2 \leq Q_{LL} Q_{RR}, \]

Normalization:

\[Q_{RR} + Q_{LR} + Q_{RL} + Q_{LL} = 1 \]

Note that \(Q_{LL} \approx 1 \)

(from Phys. Lett. 173B)

Robert Tribble – INT, October, 2008
Global Analysis

Relation to muon decay observables:

\[\rho = \frac{3}{4} + \frac{1}{4}(Q_{LR} + Q_{RL}) - (B_{LR} + B_{RL}), \]

\[\xi = 1 - 2Q_{RR} - \frac{10}{3}Q_{LR} + \frac{4}{3}Q_{RL} + \frac{16}{3}(B_{LR} - B_{RL}), \]

\[\xi \delta = \frac{3}{4} - \frac{3}{2}Q_{RR} - \frac{7}{4}Q_{LR} + \frac{1}{4}Q_{RL} + (B_{LR} - B_{RL}), \]

\[\xi' = 1 - 2Q_{RR} - 2Q_{RL}, \]

\[\xi'' = 1 - \frac{10}{3}(Q_{LR} + Q_{RL}) + \frac{16}{3}(B_{LR} + B_{RL}), \]

rad. decay \{ \eta = \frac{1}{3}(Q_{LR} + Q_{RL}) + \frac{2}{3}(B_{LR} + B_{RL}), \}

\[e^{+}_L \{ \eta = (\alpha - 2\beta)/A, \quad \eta'' = (3\alpha + 2\beta)/A. \]

Robert Tribble – INT, October, 2008
Global Analysis

2005 Input:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>0.7518 ± 0.0026</td>
</tr>
<tr>
<td></td>
<td>0.75080 ± 0.00105^a</td>
</tr>
<tr>
<td>δ</td>
<td>0.7486 ± 0.0038</td>
</tr>
<tr>
<td></td>
<td>0.74964 ± 0.00130</td>
</tr>
<tr>
<td>$P_\mu \xi$</td>
<td>1.0027 ± 0.0085^b</td>
</tr>
<tr>
<td>$P_\mu \xi \delta / \rho$</td>
<td>0.99787 ± 0.00082^b</td>
</tr>
<tr>
<td>ξ'</td>
<td>1.00 ± 0.04</td>
</tr>
<tr>
<td>ξ''</td>
<td>0.65 ± 0.36</td>
</tr>
<tr>
<td>$\bar \eta$</td>
<td>0.02 ± 0.08</td>
</tr>
<tr>
<td>α / A</td>
<td>0.015 ± 0.052^c</td>
</tr>
<tr>
<td>β / A</td>
<td>0.002 ± 0.018^c</td>
</tr>
<tr>
<td>η</td>
<td>0.071 ± 0.037^d</td>
</tr>
<tr>
<td>η''</td>
<td>0.105 ± 0.052^d</td>
</tr>
<tr>
<td>α' / A</td>
<td>-0.047 ± 0.052^e</td>
</tr>
<tr>
<td></td>
<td>-0.0034 ± 0.0219^f</td>
</tr>
<tr>
<td>β' / A</td>
<td>0.017 ± 0.018^e</td>
</tr>
<tr>
<td></td>
<td>-0.0005 ± 0.0080^f</td>
</tr>
</tbody>
</table>

2005 Output:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fit Result ($\times 10^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{RR}</td>
<td>$<1.14(0.60 \pm 0.38)$</td>
</tr>
<tr>
<td>Q_{LR}</td>
<td>$<1.94(1.22 \pm 0.53)$</td>
</tr>
<tr>
<td>B_{LR}</td>
<td>$<1.27(0.72 \pm 0.40)$</td>
</tr>
<tr>
<td>Q_{RL}</td>
<td>$<44(26 \pm 13)$</td>
</tr>
<tr>
<td>B_{RL}</td>
<td>$<10.9(6.4 \pm 3.3)$</td>
</tr>
<tr>
<td>Q_{LL}</td>
<td>$>955(973 \pm 13)$</td>
</tr>
<tr>
<td>α / A</td>
<td>0.3 ± 2.1</td>
</tr>
<tr>
<td>β / A</td>
<td>2.0 ± 3.1</td>
</tr>
<tr>
<td>α' / A</td>
<td>-0.1 ± 2.2</td>
</tr>
<tr>
<td>β' / A</td>
<td>-0.8 ± 3.2</td>
</tr>
</tbody>
</table>

Robert Tribble – INT, October, 2008
Reducing the leading systematics

• Issues that were unique to 2002 data
 – Stopping target thickness uncertainty
 – Chamber orientation uncertainty with respect to magnetic field

• Improvements in 2004 data
 – Chamber response
 • Improved gas system regulation and monitoring
 • Improved determination of foil geometry
 • Improved treatment of drift chamber behavior
 – Positron interactions better understood
 – Detector fully instrumented
 – Improved alignment techniques and understanding of uncertainties
 – New momentum calibration techniques (uncertainty is statistical)
 – Radiative corrections uncertainty evaluated
Systematic uncertainties for 2004 data: ρ and δ

<table>
<thead>
<tr>
<th>Systematic uncertainties</th>
<th>ρ (×10⁴)</th>
<th>δ (×10⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2002</td>
<td>2004</td>
</tr>
<tr>
<td>Chamber response (ave)</td>
<td>5.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Stopping target thickness</td>
<td>4.9</td>
<td><0.1</td>
</tr>
<tr>
<td>Positron interactions</td>
<td>4.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Spectrometer alignment</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Momentum calibration (ave)</td>
<td>2.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Theoretical radiative correction</td>
<td>2.0</td>
<td><0.1</td>
</tr>
<tr>
<td>Other</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Total in quadrature</td>
<td>9.2</td>
<td>4.6</td>
</tr>
</tbody>
</table>
Consistency Checks: ρ and δ

- Data sets for 2004 analysis
- Δ’s from fits to MC
- No corrections applied
- Decay parameters in BB still hidden

$\Delta\rho$ vs set

$\Delta\delta$ vs set

χ^2 / ndf

ρ and δ
Results to date

- From Fall, 2002 run:
 - $\rho = 0.75080 \pm 0.00032$ (stat) ± 0.00097 (syst) ± 0.00023 (η)
 - $\delta = 0.74964 \pm 0.00066$ (stat) ± 0.00112 (syst)

- From Fall, 2004 run:
 - $\rho = 0.75014 \pm 0.00017$ (stat) ± 0.00044 (syst) ± 0.00011 (η)
 - $\delta = 0.74964 \pm 0.00030$ (stat) ± 0.00067 (syst)

R. McDonald et al., PRD 78, 032010
Global Analysis Results

<table>
<thead>
<tr>
<th></th>
<th>Pre-TWIST</th>
<th>2002 Data</th>
<th>2004 Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>g^S_{LR}</td>
<td>$</td>
<td><0.125</td>
</tr>
<tr>
<td>$</td>
<td>g^V_{LR}</td>
<td>$</td>
<td><0.066</td>
</tr>
<tr>
<td>$</td>
<td>g^T_{LR}</td>
<td>$</td>
<td><0.036</td>
</tr>
<tr>
<td>Q^μ_R</td>
<td><0.0051</td>
<td><0.0031</td>
<td><0.0024</td>
</tr>
</tbody>
</table>

90% confidence limits
Final Uncertainty Goals

<table>
<thead>
<tr>
<th></th>
<th>Published</th>
<th>Final (est.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistics</td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>Systematics</td>
<td>Systematics</td>
</tr>
<tr>
<td>ρ</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>2.4</td>
</tr>
<tr>
<td>δ</td>
<td>3.0</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>3.2</td>
</tr>
</tbody>
</table>

All values in units of 10^{-4}

Final Publications in 2009
TWIST Collaboration
TWIST Participants

TRIUMF
Ryan Bayes *†
Yuri Davydov
Jaap Doornbos
Wayne Faszer
Makoto Fujiwara
David Gill
Alex Grossheim
Peter Gumplinger
Anthony Hillairet *†
Robert Henderson
Jingliang Hu
John A. Macdonald ‡
Glen Marshall
Dick Mischke
Mina Nozar
Konstantin Olchanski
Art Olin y
Robert Openshaw
Tracy Porcelli §
Jean-Michel Poutissou
Renée Poutissou
Grant Sheffer
Bill Shin §§

Alberta
Andrei Gaponenko **
Peter Kitching
Robert MacDonald **
Maher Quraany
Nate Rodning ‡
John Schaapman
Glen Stinson

Kurchatov Institute
Vladimir Selivanov
Vladimir Torokhov

Texas A&M
Carl Gagliardi
Jim Musser **
Bob Tribble
Maxim Vasiliev

Montréal
Pierre Depommier

Valparaiso
Don Koetke
Paul Nord
Shirvel Stanislaus

Regina
Ted Mathie
Roman Tacik

* Graduate student
** Graduated
† also U Vic
§ also Manitoba
§§ also Saskatchewan
‡ deceased

Supported under grants from NSERC (Canada) and DOE (USA).
Computing facilities of WestGrid are gratefully acknowledged.

Robert Tribble – INT, October, 2008