Medium modification of the nucleon: the NuTeV anomaly and PVDIS

Ian Cloët
(University of Washington)

Collaborators
Wolfgang Bentz (Tokai Uni) & Anthony Thomas (JLab)

INT Program: Low Energy Precision Electroweak Physics in the LHC Era
7th November 2008
Are nucleon properties modified by the nuclear medium?
 ✦ Of fundamental importance
 ✦ Remains an open question

Areas where medium modifications seem important:
 ✦ Quenching of g_A in-medium
 ✦ Nuclear magnetic moments
 ✦ In-medium Form Factors (e.g. $^4\text{He}(e,e'p)^3\text{H}$)

Importantly nuclear structure functions
 ✦ the EMC effect

Is the NuTeV anomaly evidence for medium modification?

Can parity violating DIS provide additional information on medium modification?
The EMC Effect

- Theme
- EMC Effect
 - NuTeV anomaly
 - NJL model
 - Nucleon . . .
 - Quark Dis.
 - NJL Quark Dis.
 - Nuclear Matter
 - NM Quark Dis.
 - NuTeV anomaly
 - Vector Potential
 - EMC effect
 - PVDIS a_1 ratios
 - Conclusion

- Result surprised nuclear physics community
- Long distance nuclear effects not expected to influence “short distance” quark physics
- Evidence for medium modification?
- After 25 years no consensus on cause of EMC Effect
The NuTeV anomaly

- In 2001 NuTeV collaboration, using ν DIS, “measured”:

$$R_{PW} = \frac{\sigma[\nu \text{Fe} \rightarrow \nu X] - \sigma[\bar{\nu} \text{Fe} \rightarrow \bar{\nu} X]}{\sigma[\nu \text{Fe} \rightarrow \mu^- X] - \sigma[\bar{\nu} \text{Fe} \rightarrow \mu^+ X]}$$

- Isoscalar target: $R_{PW} \overset{N=Z}{\longrightarrow} \frac{1}{2} - \sin^2 \Theta_W + \delta R_{PW}$

- $\sin^2 \theta_W = 0.2277 \pm 0.0013^{(\text{stat})} \pm 0.0009^{(\text{syst})}$

- World average: $\sin^2 \theta_W = 0.2227 \pm 0.0004$

- 3 σ discrepancy!!! \implies “NuTeV anomaly”

- Huge amount of experimental & theoretical interest:
 - ~ 370 citations as of November 2008

- No universally accepted complete explanation

- EMC and NuTeV anomaly \iff medium modification?
Nambu–Jona-Lasinio Model

- Low energy chiral effective theory of QCD

- Investigate the role of quark degrees of freedom.

- Much in common with Dyson Schwinger Equations

- Lagrangian has same symmetries as QCD:
 - Importantly chiral symmetry and DCSB,
 - Dynamically generated quark masses,
 - Non-zero chiral condensate.

- Lagrangian \((\Gamma = \text{Dirac, colour, isospin matrices})\)

\[
\mathcal{L}_{NJL} = \bar{\psi} \left(i \gamma \cdot \not{\! \! p} - m \right) \psi + G \left(\bar{\psi} \Gamma \psi \right)^2
\]
Nucleon in the NJL model

- Nucleon approximated as quark-diquark bound state.

- Use relativistic Faddeev approach:

- Diquark - bound state of two quarks:

- Solve Bethe-Salpeter equation for diquark.

- We include scalar \((0^+)\) and axial-vector diquarks \((1^+)\).
Regularization

- **Proper-time regularization**

\[
\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \tau^{n-1} e^{-\tau X} \quad \rightarrow \quad \frac{1}{(n-1)!} \int_{1/(\Lambda_{IR})^2}^{1/(\Lambda_{UV})^2} d\tau \tau^{n-1} e^{-\tau X}
\]

- Λ_{IR} eliminates unphysical thresholds for the nucleon to decay into quarks: → simulates confinement.

- Needed for: nuclear matter saturation, Δ baryon.

Model Parameters

- **Free Parameters:**
 \[\Lambda_{IR}, \Lambda_{UV}, M_0, G_\pi, G_s, G_\alpha, G_\omega \text{ and } G_\rho \]

- **Constraints:**
 - \[f_\pi = 93 \text{ MeV}, \ m_\pi = 140 \text{ MeV} \ \& \ M_N = 940 \text{ MeV} \]
 - \[\int_0^1 dx (\Delta u_v(x) - \Delta d_v(x)) = g_A = 1.267 \]
 - \[(\rho, E_B / A) = (0.16 \text{ fm}^{-3}, -15.7 \text{ MeV}) \]
 - \[a_4 = 32 \text{ MeV} \]
 - \[\Lambda_{IR} = 240 \text{ MeV} \]

- **We obtain [MeV]:**
 - \[\Lambda_{UV} = 644 \]
 - \[M_0 = 400, \ M_s = 690, \ M_\alpha = 990, \ldots \]

- **Can now model a very large array of observables**
Three twist-2 parton distributions \((k_{\perp} = 0)\):

- Spin-Independent, Helicity, Transversity

\[
\begin{align*}
q(x) & \quad \Delta q(x) & \quad \Delta_T q(x)
\end{align*}
\]

Usually measured via DIS and SIDIS

Bjorken-\(x\) is the quark momentum fraction

All distributions have probability interpretation

- \(q(x)\): prob. to strike quark with momentum fraction \(x\)
Nucleon quark distributions

- Associated with a Feynman diagram calculation

\[
[q(x), \Delta q(x), \Delta_T q(x)] \quad \rightarrow \quad X = \delta \left(x - \frac{k^+}{p^+} \right) \left[\gamma^+, \gamma^+\gamma_5, \gamma^+\gamma^1\gamma_5 \right]
\]

- Covariant and gives correct support
- Satisfies baryon and momentum sum rules
- Satisfies positivity constraints and Soffer bound
- No “VMD” \[\delta(1 - x) \]; No pions \[Q_0^2 \rightarrow \tilde{Q}_0^2 \]
$u_v(x)$ and $d_v(x)$ distributions

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

$Q^2_0 = 0.16 \text{ GeV}^2$

$Q^2 = 5.0 \text{ GeV}^2$

MRST (5.0 GeV2)

$\Delta u_v(x)$ and $\Delta d_v(x)$ distributions

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

\[\Delta_T u_v(x) \text{ and } \Delta_T d_v(x) \text{ distributions} \]

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS \(a_1 \) ratios
- Conclusion

- \(M \sim 400 \) MeV, large relativistic corrections unexpected

- Potential problem for models based on concept of “constituent quarks”
Transversity: Reanalysis

Q^2 = 2.4 GeV^2

Anselmino et al DIS 08

Constituent quarks survive
Transversity Moments

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

![Graph showing models for $\Delta_T u$ and $\Delta_T d$](image)

- **Anselmino et al DIS 08**
Asymmetric Nuclear Matter: Lagrangian

- Finite Density Lagrangian: σ, ω, ρ mean fields

$$\mathcal{L} = \bar{\psi} \left(i \hat{\partial} - M^* - \mathcal{V} \right) \psi + \mathcal{L}'_I$$

- σ: isoscalar-scalar – attractive
- ω: isoscalar-vector – repulsive
- ρ: isovector-vector – attractive/repulsive

- Fundamental piece of physics is that these mean scalar and vector fields couple to the quarks in the nucleon!!

- Finite density quark propagator

$$S(k) = \frac{1}{k^2 - M^2 - i\varepsilon} \quad \rightarrow \quad S_q(k) = \frac{1}{k^2 - M^{*2} - \mathcal{V}_q - i\varepsilon}$$

- Quark vector potentials:

$$V_u = \omega_0 + \rho_0 \quad V_d = \omega_0 - \rho_0$$
Asymmetric Nuclear Matter: Effective Potential

- Hadronization → Effective potential

\[
\mathcal{E} = \mathcal{E}_V - \frac{\omega_0^2}{4 G_\omega} - \frac{\rho_0^2}{4 G_\rho} + \mathcal{E}_p + \mathcal{E}_n
\]

\[
\mathcal{E}_p(n) = 2 \int \frac{d^3 \vec{p}}{(2\pi)^3} n(k) \left[\sqrt{M_N^2 + \vec{p}^2} + 3\omega_0 \pm \rho_0 \right]
\]

- \(\mathcal{E}_V\): Vacuum Energy
- \(\mathcal{E}_p(n)\): Energy of nucleons moving in \(\sigma, \omega, \rho\) fields

- Vector fields

\[
\frac{\partial \mathcal{E}}{\partial \omega_0} = 0 \quad \Rightarrow \quad \omega_0 = 6 G_\omega (\rho_p + \rho_n)
\]

\[
\frac{\partial \mathcal{E}}{\partial \rho_0} = 0 \quad \Rightarrow \quad \rho_0 = 2 G_\rho (\rho_p - \rho_n)
\]

- In-medium Constituent Quark Mass:

\[
\frac{\partial \mathcal{E}}{\partial M^*} = 0 \quad \Rightarrow \quad M^* \text{ at given density}
\]
Binding Energy for Nuclear Matter

- Binding Energy depends on $Z/N \leftrightarrow \rho_0$-field
- Nuclear Matter unbound for $Z/N < 0.12$.
Mass versus Density for Nuclear Matter

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion
Nuclear Matter Quark Distributions

- **Finite Density Propagator:**

\[
S_q(k) = \frac{1}{k - M^* - \nu_q}, \quad V_u = \omega_0 + \rho_0, \quad V_d = \omega_0 - \rho_0
\]

- **Scalar field introduced via effective masses**

- **Fermi motion introduced via convolution**

\[
f_{p0}(y_A) = \frac{Z}{A} \frac{3}{4} \left(\frac{\hat{M}_N}{p_{Fp}} \right)^3 \left[\left(\frac{p_{Fp}}{\hat{M}_N} \right)^2 - \left(\frac{E_{Fp}}{\hat{M}_N} - y_A \right)^2 \right]^2
\]

\[
f_{n0}(y_A) = \frac{N}{A} \frac{3}{4} \left(\frac{\hat{M}_N}{p_{Fn}} \right)^3 \left[\left(\frac{p_{Fn}}{\hat{M}_N} \right)^2 - \left(\frac{E_{Fn}}{\hat{M}_N} - y_A \right)^2 \right]^2
\]

- **\(N \neq Z \): Fermi motion breaks nucleon isospin symmetry**

 - that is: \(u_p \neq d_n \) and \(u_n \neq d_p \)
Recall:
\[S_q = \frac{1}{k - M^* - V_q}, \quad V_u = \omega_0 + \rho_0, \quad V_d = \omega_0 - \rho_0 \]

Vector field introduced via scale transformation
\[q(x) = \frac{P^+}{P^+ - V^+} q_0 \left(\frac{P^+}{P^+ - V^+} x - \frac{V^+}{P^+ - V^+} \right) \]

For asymmetric nuclear matter
\[q_A(x_A) = \frac{M_N}{\hat{M}_N} q_{A0} \left(\frac{M_N}{\hat{M}_N} x_A - \frac{V_q}{\hat{M}_N} \right) \]

\[N \neq Z: \text{ Vector field breaks nucleon isospin symmetry} \]

that is: \[u_p \neq d_n \text{ and } u_n \neq d_p \]
Results: Nuclear Matter $Z/N = 1$

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

\[r_{pn} = 1 \]

Proton Quark Distributions

$u_p(x)$

$d_p(x)$

free

scalar

+ Fermi

+ vector

\[x \quad 0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \]

\[x \quad 0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \]

Proton Quark Distributions
Results: Nuclear Matter $Z/N = 1$

- Vector field plays critical role: non-local operator
- We have: $u_p(x) = d_n(x)$ and $d_p(x) = u_n(x)$
Results: Nuclear Matter $Z/N = 0.6$

- We have: $u_p(x) \neq d_n(x)$ and $d_p(x) \neq u_n(x)$
- “Nucleon isospin symmetry violation” $\leftrightarrow \rho^0$ field.
Nucleon Isospin Symmetry Breaking

- Nucleon isospin symmetry broken by nuclear effects – ρ_0-field
- Medium induced charge asymmetry
- This effect will provide correction to NuTeV anomaly
The NuTeV anomaly

- Recall
 \[R_{PW} = \frac{\left(\frac{1}{6} - \frac{4}{9} \sin^2 \Theta_W\right) \langle x u^-_A \rangle + \left(\frac{1}{6} - \frac{2}{9} \sin^2 \Theta_W\right) \langle x d^-_A \rangle}{\langle x d^-_A \rangle - \frac{1}{3} \langle x u^-_A \rangle} \]

- Redo NuTeV experiment theoretically

- Use our "Fe" medium modified \(q_A(x) \):
 \[(\delta N = 5.74\%) \]

- Evaluate \(R_{PW} \) using S.M. value for \(\Theta_W \)

- Apply "standard" non-isoscalarity correction to \(R_{PW} \)

\[R_{PW} = 0.2741 \quad \text{compare NuTeV: } R_{PW} = 0.2723 \pm \ldots \]

- Convert to effective \(\sin^2 \Theta_W \equiv \frac{1}{2} - R_{PW} \)

\[\sin^2 \Theta_W = 0.2259 \]
\[\sin^2 \Theta_W = 0.2277 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst}) \quad (\text{NuTeV}) \]
The NuTeV anomaly cont’d

- Nucleon isospin violation is small
- Define effective Θ_W:
 $$\sin^2 \Theta_W \equiv \frac{1}{2} - R_{PW}$$

<table>
<thead>
<tr>
<th></th>
<th>Free</th>
<th>Fermi</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle xu_{\bar{A}} \rangle$</td>
<td>0.4889</td>
<td>0.4885</td>
<td>0.4855</td>
</tr>
<tr>
<td>$\langle xd_{\bar{A}} \rangle$</td>
<td>0.5111</td>
<td>0.5115</td>
<td>0.5145</td>
</tr>
<tr>
<td>$\langle x\tilde{u}_{\bar{A}} \rangle$</td>
<td>0.5000</td>
<td>0.4996</td>
<td>0.4966</td>
</tr>
<tr>
<td>$\langle x\tilde{d}_{\bar{A}} \rangle$</td>
<td>0.5000</td>
<td>0.5004</td>
<td>0.5034</td>
</tr>
<tr>
<td>$\sin^2 \Theta_W$</td>
<td>0.2227</td>
<td>0.2231</td>
<td>0.2259</td>
</tr>
</tbody>
</table>
Convert to effective $\sin^2 \Theta_W \equiv \frac{1}{2} - R_{PW}$

\[
\sin^2 \Theta_W = 0.2259 \\
\sin^2 \Theta_W = 0.2277 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst}) \quad (\text{NuTeV})
\]

Non-isoscalarity ρ_0 correction can explain $\sim 64\%$ of anomaly

\[CSV_{\delta m} + \rho_0 = 0.0017 + 0.2259 \implies \text{No NuTeV anomaly} \]

NuTeV R_{PW} result consistent with S.M.

Instead “anomaly” evident for medium modification

Equally interesting:

- e.g. EMC effect ~ 830 citations as of Nov 2008

Vector Potential & Model Independence

- Recall: \[q_A(x_A) = \frac{M_N}{M_N} q_{A0} \left(\frac{M_N}{M_N} x_A - \frac{V_q}{M_N} \right) \]

- \(N \neq Z \implies u\)- and \(d\)-quarks feel different \(V_q \)

- \(N > Z \implies V_u < V_d \), \(\langle x u^- \rangle < \langle x d^- \rangle \)

- Therefore: \(\langle x u^-_A \rangle < \langle x u^-_0 \rangle, \langle x d^-_A \rangle > \langle x d^-_0 \rangle \)

- Vector fields maintain momentum sum rule!!

- Isoscalarity: \(\langle x u^- - x d^-_0 \rangle = 0, \langle x u^-_A - x d^-_A \rangle < 0 \)

- Recall \(\delta R_{PW}^\rho \simeq \left(1 - \frac{7}{3} \sin^2 \Theta_W \right) \frac{\langle x u^-_A - x d^-_A \rangle}{\langle x u^-_A + x d^-_A \rangle} \)

- Therefore \(\delta R_{PW}^\rho \) is negative – after isoscalarity

- \(\rho_0 \) vector field reduces anomaly – Model Independent!!
We claim ρ_0-field explains NuTeV, but is this nucleon isospin violation consistent with other observables?

Important to check effect of ρ_0-field on EMC effect

Definition of EMC ratio

$$R^i = \frac{F_{2A}^i}{F_{2A}^{\text{naive}}} = \frac{F_{2A}^i}{ZF_{2p}^i + N F_{2n}^i} \quad i \in \gamma, \gamma Z, \dotsc$$

Ratios equal unity in no Fermi motion and no-medium modification limit

Can PVDIS provide evidence for the ρ_0-field mechanism
EMC Effect: Asymmetric Nuclear Matter

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

\[\rho = \rho_p + \rho_n = 0.16 \text{ fm}^{-3} \]

\[R^\gamma = \frac{F_{2A}}{F_{2A}^{\text{naive}}} \sim \frac{4}{4} \frac{u_A(x)+d_A(x)}{u_0(x)+d_0(x)}, \quad u(x) = \frac{Z}{A} u_p(x) + \frac{N}{A} u_n(x) \ldots \]

- If $\frac{Z}{N} > 1 : u(x) > d(x)$, V_u increases, V_d decreases
- If $\frac{Z}{N} < 1 : u(x) < d(x)$, V_u decreases, V_d increases

- Decreasing EMC effect for $\frac{Z}{N} > 1$
- EMC effect increases for $0.6 < \frac{Z}{N} < 1$

 - At fixed density EMC effect depends on $\frac{Z}{N}$
\(F_2^\gamma \) and \(F_2^{\gamma Z} \) EMC ratios

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS \(a_1 \) ratios
- Conclusion

\[
R_1^\gamma \sim \frac{4u_A(x)+d_A(x)}{4u_0(x)+d_0(x)} \quad \& \quad R^{\gamma Z}_1 \sim \frac{1.16u_A(x)+d_A(x)}{1.16u_0(x)+d_0(x)}
\]

- For isoscalar target \(R^\gamma = R^{\gamma Z} \) – provided \(u_A = d_A \)
F_2^γ and $F_2^{\gamma Z}$ EMC ratios

- $R^\gamma \sim \frac{4 u_A(x) + d_A(x)}{4 u_0(x) + d_0(x)}$ & $R^{\gamma Z} \sim \frac{1.16 u_A(x) + d_A(x)}{1.16 u_0(x) + d_0(x)}$

- $\frac{Z}{N} < 1 : u_A(x) < d_A(x)$, V_u decreases, V_d increases

Iron ($r_{pn} = 26/30$)

$Q^2 = 5.0$ GeV2
\[F_2^\gamma \text{ and } F_2^\gamma Z \text{ EMC ratios} \]

\[Q^2 = 5.0 \text{ GeV}^2 \]

\[R^\gamma \sim \frac{4u_A(x)+d_A(x)}{4u_0(x)+d_0(x)} \quad \& \quad R^\gamma Z \sim \frac{1.16u_A(x)+d_A(x)}{1.16u_0(x)+d_0(x)} \]

\[\frac{Z}{N} < 1: u_A(x) < d_A(x), \ V_u \text{ decreases}, \ V_d \text{ increases} \]

\[\rho_0\text{-field} \implies R^\gamma Z > R^\gamma \quad \text{Model Independent} \]
PVDIS a_1 ratios

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

- No exactly sure how to interpret these results
- After non-isoscalarity correction medium effects large
- Medium effects largely disappear if $\rho_0 = 0$
- Effect seems to reflect underlying nucleon isospin symmetry breaking

\[
a_1A = \frac{2 \sum e_q C_{1q} q_A^+(x)}{\sum e_q^2 q_A^+(x)} \approx 2.11 \frac{1.16 u_A(x) + d_A(x)}{4 u_A(x) + d_A(x)}
\]
Conclusion

- **NuTeV** $\sin^2 \Theta_W$ result one of the most important results in recent nuclear/particle physics
- Interpretation of **NuTeV** result requires detailed understanding of nuclear, hadronic and particle physics effects
- We claim nucleon isospin violation induced by ρ_0-field can explain 64% of **NuTeV** anomaly
- Therefore CSV $\delta m + \rho_0$ explains $\sim 100\%$ of anomaly
- Instead **NuTeV** anomaly is interpreted as evident for modification of quark wavefunctions by the nuclear medium
- The same mechanism – binding of quarks to mean scalar and vector fields – explains the EMC effect
- Predict γZ-EMC effect smaller that γ-EMC effect
- If true – very important result for nuclear physics
Why is Transversity Interesting?

- Moments \implies tensor charge
- Non-relativistic limit: $\Delta_T q(x) = \Delta q(x)$
 - $\Delta_T q(x)$ measure of relativistic effects
- Helicity conservation \implies no mixing bet. $\Delta_T q$ & $\Delta_T g$
- $\Delta_T g(x) = 0$ unless $J \geq 1$.
- \implies Valence quark dominated
- Important: Transverse Spin Sum

$$\int dx \Delta_T q(x) = \langle \bar{\psi}_q \gamma^+ \gamma^1 \gamma^5 \psi_q \rangle \neq \langle \psi^+_+ \gamma^0 \gamma^1 \gamma^5 \psi_+ \rangle = \Sigma_{Tq}$$

- Transversity moment \neq spin of quark in \perp direction.
PVDIS a_1 ratios

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

Graphs

- Carbon
- Iron
- Lead

$Q^2 = 5.0 \text{ GeV}^2$
PVDIS α_1 ratios

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS α_1 ratios
- Conclusion
Gap Equation & Mass Generation

- **Gap Equation:**

\[\begin{align*}
\text{Gap Equation:} \\
\text{Self-consistent solution} \quad \text{-- gives Quark Propagator} \\
\text{Mass is generated via interaction with vacuum}
\end{align*} \]

\[\frac{1}{p - m + i\varepsilon} \rightarrow \frac{1}{p - M + i\varepsilon} \]

\[m_q = 0 \text{ MeV} \quad m_q = 5 \text{ MeV} \quad m_q = 50 \text{ MeV} \]
Gap Equation & Mass Generation

- **Gap Equation:**

\[\Delta \rightarrow \Delta + \Delta \]

- **Self-consistent solution** – gives Quark Propagator

\[\frac{1}{\not{p} - m + i\varepsilon} \rightarrow \frac{1}{\not{p} - M + i\varepsilon} \]

- **Mass is generated via interaction with vacuum**

Plot:

- Application of different masses: \(m_q = 0 \text{ MeV}, m_q = 5 \text{ MeV}, m_q = 50 \text{ MeV} \)

- Graph showing the dynamical quark mass evolution with a ratio \(G/G_{\text{crit}} \) and momentum \(p \) in [GeV].

- Rapid acquisition of mass is shown as an effect of a gluon cloud for different masses: \(m = 0 \text{ (Chiral limit)}, m = 30 \text{ MeV}, m = 70 \text{ MeV} \).
Parameter Values

<table>
<thead>
<tr>
<th>r_{pn}</th>
<th>M</th>
<th>M_N</th>
<th>\bar{M}_N</th>
<th>\hat{M}_N</th>
<th>ω_0</th>
<th>ρ_0</th>
<th>V_u</th>
<th>V_d</th>
<th>p_{Fp}</th>
<th>p_{Fn}</th>
<th>ε_p</th>
<th>ε_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>321</td>
<td>748</td>
<td>987</td>
<td>819</td>
<td>44.5</td>
<td>-34.8</td>
<td>9.6</td>
<td>79.3</td>
<td>0</td>
<td>331</td>
<td>847</td>
<td>987</td>
</tr>
<tr>
<td>0.2</td>
<td>320</td>
<td>747</td>
<td>951</td>
<td>803</td>
<td>44.5</td>
<td>-23.2</td>
<td>21.3</td>
<td>67.7</td>
<td>182</td>
<td>311</td>
<td>879</td>
<td>966</td>
</tr>
<tr>
<td>0.4</td>
<td>320</td>
<td>746</td>
<td>935</td>
<td>796</td>
<td>44.5</td>
<td>-14.9</td>
<td>29.5</td>
<td>59.4</td>
<td>218</td>
<td>296</td>
<td>896</td>
<td>951</td>
</tr>
<tr>
<td>0.6</td>
<td>320</td>
<td>746</td>
<td>928</td>
<td>793</td>
<td>44.5</td>
<td>-8.7</td>
<td>35.8</td>
<td>53.2</td>
<td>239</td>
<td>283</td>
<td>908</td>
<td>940</td>
</tr>
<tr>
<td>0.8</td>
<td>320</td>
<td>746</td>
<td>925</td>
<td>791</td>
<td>44.5</td>
<td>-3.9</td>
<td>40.6</td>
<td>48.3</td>
<td>252</td>
<td>272</td>
<td>917</td>
<td>931</td>
</tr>
<tr>
<td>1</td>
<td>320</td>
<td>746</td>
<td>924</td>
<td>791</td>
<td>44.5</td>
<td>0</td>
<td>44.5</td>
<td>44.5</td>
<td>263</td>
<td>263</td>
<td>924</td>
<td>924</td>
</tr>
<tr>
<td>1/0.8</td>
<td>320</td>
<td>746</td>
<td>925</td>
<td>791</td>
<td>44.5</td>
<td>3.9</td>
<td>48.3</td>
<td>40.6</td>
<td>272</td>
<td>252</td>
<td>931</td>
<td>917</td>
</tr>
<tr>
<td>1/0.6</td>
<td>320</td>
<td>746</td>
<td>928</td>
<td>793</td>
<td>44.5</td>
<td>8.7</td>
<td>53.2</td>
<td>35.8</td>
<td>283</td>
<td>239</td>
<td>940</td>
<td>908</td>
</tr>
<tr>
<td>1/0.4</td>
<td>320</td>
<td>746</td>
<td>935</td>
<td>796</td>
<td>44.5</td>
<td>14.9</td>
<td>59.4</td>
<td>29.5</td>
<td>296</td>
<td>218</td>
<td>951</td>
<td>896</td>
</tr>
<tr>
<td>1/0.2</td>
<td>320</td>
<td>747</td>
<td>951</td>
<td>803</td>
<td>44.5</td>
<td>23.2</td>
<td>67.7</td>
<td>21.3</td>
<td>311</td>
<td>182</td>
<td>966</td>
<td>879</td>
</tr>
<tr>
<td>(\infty)</td>
<td>321</td>
<td>748</td>
<td>987</td>
<td>819</td>
<td>44.5</td>
<td>34.8</td>
<td>79.3</td>
<td>9.6</td>
<td>331</td>
<td>0</td>
<td>987</td>
<td>847</td>
</tr>
</tbody>
</table>

Table 1: Values of the masses, mean vector fields, fermi momentum and fermi energy for and various values of r_{pn}, at a fixed density of $\rho_0 = 0.16 \text{ fm}^{-3}$. Note, this density is the saturation density for $r_{pn} = 1$.
In 2002 NuTeV collaboration measured

\[R_{PW} = \frac{\sigma (\nu \text{ Fe} \rightarrow \nu X) - \sigma (\bar{\nu} \text{ Fe} \rightarrow \bar{\nu} X)}{\sigma (\nu \text{ Fe} \rightarrow \mu^- X) - \sigma (\bar{\nu} \text{ Fe} \rightarrow \mu^+ X)} = \frac{\sigma_{NC}}{\sigma_{CC}} \]

In isoscalar limit:

\[R_{PW}^{N=Z} \to \frac{1}{2} - \sin^2 \Theta_W \]

After “standard” isoscalarity correction, NuTeV found

\[R_{PW} = 0.2723 \implies \sin^2 \Theta_W = 0.2277, \text{ (S. M. } \sin^2 \Theta_W = 0.2227) \]

However important isoscalarity correction missing

For \(Z \neq N \), isovector-vector field, \(\rho^0 \neq 0 \)

\[u_p(x) \neq d_n(x) \text{ and } d_p(x) \neq u_n(x) \text{ in-medium} \]
Assumptions:

- Heavy quark momentum fractions equal zero
- Isospin (charge) symmetry preserved
 \[u_A^- = d_A^- \implies u_p(x) = d_n(x), \quad d_p(x) = u_n(x) \]
- No higher twist effects

Corrections at LO for \(N = Z \):

\[
\Delta R_{PW} \propto \left[\frac{1}{2} \left(\langle x \delta u_V \rangle - \langle x \delta d_V \rangle \right) + \langle x (c - \bar{c}) \rangle - \langle x (s - \bar{s}) \rangle \right]
\]

\[
\delta q_V(x) = u^P_V(x) - d^V_n(x), \quad \langle q(x) \rangle \equiv \int_0^1 dx \ q(x).
\]
Sum Rules

- **Baryon Number and Momentum**

\[\int dx \, q_v(x) = N_q, \quad \int dx \, x [u(x) + d(x) + \ldots] = 1 \]

- **Spin Sum: spin carried by quarks**

\[\int dx \, [\Delta u(x) + \Delta d(x) + \ldots] = \Sigma_q \]

- **Nucleon axial & tensor charges**

\[g_A = \Delta u - \Delta d, \quad g_T = \Delta_T u_v - \Delta_T d_v, \]

- **Satisfy positivity constraints and Soffer bound**

\[\Delta q(x), \Delta_T q(x) \leq q(x), \quad q(x) + \Delta q(x) \geq 2 |\Delta_T q(x)| \]
$q_A^{JH}(x_A) = \sum_{\kappa,m} \int dy_A \int dx \, \delta(x_A - y_A x) \, f_{\kappa,m}^{(JH)}(y_A) \, q_\kappa(x)$

$q^{(JK)}(x) \equiv \sum_H (-1)^{J-H} \sqrt{2K + 1} \left(\begin{array}{ccc} J & J & K \\ H & -H & 0 \end{array} \right) q^{JH}(x)$
Shell Model: Nucleon distribution functions

- Relativistic single particle shell model
- Nucleon distribution functions

\[f_{\kappa m}(y_A) = \frac{\sqrt{2} M_N}{A} \int \frac{d^3 p}{(2\pi)^3} \delta(p^3 + \varepsilon_\kappa - M_N y_A) \bar{\Psi}_{\kappa m}(\vec{p}) \gamma^+ \Psi_{\kappa m}(\vec{p}), \]

- Central Potential Dirac eigenfunctions

\[\Psi_{\kappa m}(\vec{p}) = (-i)^\ell \begin{bmatrix} F_\kappa(p) \Omega_{\kappa m}(\theta, \phi) \\ -G_\kappa(p) \Omega_{-\kappa m}(\theta, \phi) \end{bmatrix}, \]

- Dirac Equation

\[\left[-i \vec{\alpha} \cdot \vec{\nabla} + \beta [M(r) - V_s(r)] + V_v(r) \right] \psi_\kappa(r) = \varepsilon_\kappa \psi_\kappa(r) \]

- Assume Wood-Saxon scalar and vector potentials.
Nucleon distributions: ^{28}Si

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion
Quark distributions in 27Al

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS α_1 ratios
- Conclusion
Multipole distributions in 27Al

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon...
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

- Higher multipole quark distributions encapsulate difference from system of nucleons at rest
Probability for find bare quark: \[Z_q = 1 + \frac{\partial \Sigma_q}{\partial \psi} \]

Pion cloud → anomalous m.m for constituent quarks.

\[
F_{1q}(Q^2) = Z_q \left(\frac{1}{6} F_\omega + \frac{1}{2} \tau_3 F_\rho \right) + (F_\omega - \tau_3 F_\rho) F_{1q}^{(q)} + \tau_3 F_\rho F_{1q}^{(\pi)}
\]

\[
F_{2q}(Q^2) = (F_\omega - \tau_3 F_\rho) F_{2q}^{(q)} + \tau_3 F_\rho F_{2q}^{(\pi)}
\]

Self-consistent pion cloud

However no pion exchange between quarks

Better to add pion at nucleon level
Future Directions

- Important to perform calculation for nuclei
- Need model for nucleus in terms of quark d.o.f.
- Completed naive relativistic “single-particle” shell model
 - Used Wood-Saxon scalar and vector potentials
 - Local density approximation for each nucleon orbital
 - Use NJL model to translate into fields felt by quarks
 - Calculate medium modified quark distributions
 - Good description of EMC effect in $N \sim Z$ nuclei
- Working on self-consistent model with σ, ω, ρ and Coulomb fields
- Interplay between Coulomb and ρ-field potentially important for correct A-dependence of EMC effect
EMC ratio ^7Li

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS α_1 ratios
- Conclusion

\[Q^2 = 5 \text{ GeV}^2 \]
EMC ratio ^7Li, ^{11}B, ^{15}N and ^{27}Al

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS α_1 ratios
- Conclusion
Nuclear Matter

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

$Q^2 = 10.0 \text{ GeV}^2$

$\rho = 0.16 \text{ fm}^{-3}$

Is there medium modification

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

![Graph showing EMC Ratios for ^{27}Al](image)

Experiment: ^{27}Al

- Unpolarized EMC effect
- Polarized EMC effect

$Q^2 = 5 \text{ GeV}^2$
Is there medium modification

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon...
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

$Q^2 = 5 \text{ GeV}^2$

27Al

![Graph showing EMC Ratios](image)

- Unpolarized EMC effect
- Polarized EMC effect

Experiment: ^{27}Al

Mathematical equations and data points are shown on the graph.
The NuTeV anomaly

- In 2001 NuTeV collaboration, using ν DIS, measured:
 - $\sin^2 \theta_W = 0.2277 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst})$

- World average (not including NuTeV):
 - $\sin^2 \theta_W = 0.2227 \pm 0.0004$

- 3 σ discrepancy!!! \Rightarrow “NuTeV anomaly”

- Fermilab press conference 7th Nov 2001:
 - “3 σ discrepancy \Rightarrow 99.75% probability ν are not like other particles . . . only 1 in 400 chance that our measurement is consistent with prediction” – MacFarland

- Huge amount of experimental & theoretical interest:
 - \sim370 citations as of November 2008

- No universally accepted complete explanation
New Physics Explanations

- Explain anomaly – but leave other quantities unchanged
- Detailed discussion beyond S.M. see:
 S. Davidson, S. Forte, P. Gambino, N. Rius and A. Strumia, JHEP 0202, 037 (2002)
- MSSM: corrections have wrong sign and are too small
- Heavy Z' boson – unmixed with Z
 Maybe: but muon $g - 2$ places tight constraints
- Leptoquarks – carry both lepton and baryon number
 Can explain anomaly, but with fine tuning
- Unparticles – seem to be able to explain most things
- Probably wise to first consider S.M. explanations
Paschos-Wolfensteinn Ratio

- Paschos-Wolfensteinn ratio given by

\[R_{PW} = \frac{\sigma [\nu A(N, Z) \rightarrow \nu X] - \sigma [\bar{\nu} A(N, Z) \rightarrow \bar{\nu} X]}{\sigma [\nu A(N, Z) \rightarrow \mu^- X] - \sigma [\bar{\nu} A(N, Z) \rightarrow \mu^+ X]} \]

- Expressing \(R_{PW} \) in terms of quark distributions:

\[R_{PW} = \frac{\left(\frac{1}{6} - \frac{4}{9} \sin^2 \Theta_W \right) \langle x u^-_A + x c^-_A \rangle + \left(\frac{1}{6} - \frac{2}{9} \sin^2 \Theta_W \right) \langle x d^-_A + x s^-_A \rangle}{\langle x d^-_A + x s^-_A \rangle - \frac{1}{3} \langle x u^-_A + x c^-_A \rangle} \]

- Valence quarks only: \(q^- = q - \bar{q}, \quad \langle q \rangle \equiv \int dx \, q(x) \)

- Recall: \(q_A(x) \) is probability to find quark of flavour \(q \) with momentum fraction \(x \) of target \(A \)

- Sum rules:

\[\langle u^-_A \rangle = 2Z + N, \quad \langle d^-_A \rangle = Z + 2N, \quad \langle s^-_A \rangle = \langle c^-_A \rangle = 0 \]
\[\langle x \left(u_A + \bar{u}_A + d_A + \bar{d}_A + \ldots \right) \rangle = 1 \]
Recall

\[R_{PW} = \left(\frac{1}{6} - \frac{4}{9} \sin^2 \Theta_W \right) \left(x u_A^+ + x c_A^- \right) + \left(\frac{1}{6} - \frac{2}{9} \sin^2 \Theta_W \right) \left(x d_A^- + x s_A^- \right) \]

\[\frac{\left(x d_A^- + x s_A^- \right)}{\left(x u_A^+ + x c_A^- \right)} \]

For isoscalar target (i.e. \(N = Z \)) \(R_{PW} \) becomes

\[R_{PW}^{N=Z} \xrightarrow{N=Z} \frac{1}{2} - \sin^2 \Theta_W + \delta R_{PW}^A + \delta R_{PW}^{QCD} + \delta R_{PW}^{EW} \]

Assumptions:
- (1) Heavy quark momentum fractions equal zero
- (2) Isospin (charge) symmetry preserved

\[u_A^- = d_A^- \Rightarrow u_p = d_n, \; d_p = u_n \]

(1) Likely false — \(\langle x s_A^- \rangle \gtrsim 0 \)

(2) Very likely false — quark mass and nuclear effects
In 2001 NuTeV collaboration, using ν DIS, measured:

\[R^\nu = \frac{\sigma[\nu \text{Fe} \to \nu X]}{\sigma[\nu \text{Fe} \to \mu^- X]}, \quad R^\bar{\nu} = \frac{\sigma[\bar{\nu} \text{Fe} \to \bar{\nu} X]}{\sigma[\bar{\nu} \text{Fe} \to \mu^+ X]} \]

Monte-Carlo to obtain:

\[R_{PW} = \frac{\sigma^{\nu \text{Fe}}_{NC} - \sigma^{\bar{\nu} \text{Fe}}_{NC}}{\sigma^{\nu \text{Fe}}_{CC} - \sigma^{\bar{\nu} \text{Fe}}_{CC}} \]

LO radiative corrections applied; NLO small

Fe target has 5.74% neutron excess: $\delta N \equiv \frac{1}{A}(A - 2Z)$

- Need non-isoscalarity correction
- Applied assuming protons/neutrons are free
- Therefore no medium effects (c.f. EMC effect)

Using $R_{PW}^{N=Z} \rightarrow \frac{1}{2} - \sin^2 \Theta_W$ NuTeV obtain:

\[\sin^2 \theta_W = 0.2277 \pm 0.0013(\text{stat}) \pm 0.0009(\text{syst}) \]
Standard Model Corrections

- Need to account for $\Delta R_{PW} = 0.0050$

- (1) Heavy quark effects
 - Non-perturbative strange quark distributions
 - NNLO perturbative $\langle x s_A^- \rangle$
 - $\langle x c_A^- \rangle \approx 0$ or very small

- (2) Isospin violation effects
 - Charge symmetry violation effects from $m_u \neq m_d$
 - Charge symmetry violation from nuclear effects
 - High twist effects
 - QED splitting – changes quark distribution evol.

- Corrections at LO

$$\Delta R_{PW} \propto \frac{1}{\langle x u_A^- + x d_A^- \rangle} \left[\langle x u_A^- - x d_A^- \rangle + \langle x c_A^- \rangle - \langle x s_A^- \rangle \right]$$
Strange Quark Contribution to PW Ratio

Strange quark correction to PW ratio is:

$$\Delta R_{PW}^s \simeq - \left(1 - \frac{7}{3} \sin^2 \Theta_W\right) \frac{\langle x s_A \rangle}{\langle x u_A + x d_A \rangle}$$

- Baryon number \(\Rightarrow \int_0^1 dx [s(x) - \bar{s}(x)] = 0\)
- However momentum fractions are not constrained
- Example of non-perturbative mechanism

\[K = q\bar{s}, \quad \Lambda, \Sigma = qqs, \quad \text{where} \quad m_K < M_{\Lambda,\Sigma}\]

Therefore \(\Rightarrow \int_0^1 dx x [s(x) - \bar{s}(x)] > 0\)

Strange quarks should reduce NuTeV anomaly
Strange Quark Contribution: Experiment

- Theme
- EMC Effect
- NuTeV anomaly
- NJL model
- Nucleon . . .
- Quark Dis.
- NJL Quark Dis.
- Nuclear Matter
- NM Quark Dis.
- NuTeV anomaly
- Vector Potential
- EMC effect
- PVDIS a_1 ratios
- Conclusion

 - $-0.001 < \langle x \, s^- \rangle < 0.004 \rightarrow \langle x \, s^- \rangle = 0.0017$

- NuTeV find: $\langle x \, s^- \rangle = 0.00176 \pm 0.00043$

- Conclusion: $\langle x \, s^- \rangle$ may account for 0–25% of anomaly

- Theory: $\langle x \, s^- \rangle$ accounts for 10-20% of anomaly

Charge Symmetry Violation in Free Nucleon

- CSV results from: $\delta m = m_d - m_u \sim 4\text{MeV}$
- Nucleon charge (isospin) symmetry broken:
 - $\Leftrightarrow u_p \neq d_n \& d_p \neq u_n$
- PW ratio CSV correction:
 \[\Delta R_{PW}^{CSV} \simeq \left(1 - \frac{7}{3} \sin^2 \Theta_W \right) \frac{\langle x u_A - x d_A \rangle}{\langle x u_A + x d_A \rangle} \]
- What do we expect? Consider deuteron:
 - $m_u < m_d \implies \langle x u_A \rangle < \langle x d_A \rangle$
- Expect negative $\Delta R_{PW}^{CSV} \implies$ CSV reduces anomaly
Proton-neutron CSV has been studied

Theory and parametrizations in excellent agreement

\[
\langle x u_p^- \rangle < \langle x d_n^- \rangle \quad \& \quad \langle x u_n^- \rangle < \langle x d_p^- \rangle
\]

Nucleus sum of free protons & neutrons:

\[
\Rightarrow \Delta R_{PW}^{CSV} \propto \langle x \delta u_V - x \delta d_V \rangle \sim -(0.0014 - 0.0017)
\]

CSV reduces anomaly by about \(\sim 30\%\)
Nuclear Effects

- **NuTeV non-isoscalarity** ($N \neq Z$) correction is large: 0.0080
- Many nuclear corrections may be missing in NuTeV non-isoscalarity correction
- Potentially very important – compare EMC effect
- Important effects include: Fermi motion, nuclear binding, nuclear shadowing
- Detailed discussion see:
- Fermi motion and nuclear shadowing seem to cancel
- Conclusion: “Traditional” nuclear effects unlikely to explain anomaly
Current Status

- A lot of experimental and theoretical work has been done
- Corrections to R_{PW} are small → experimentally challenging, large relative errors
- Best guess is that strange quarks and CSV from quark mass differences can explain \sim20–60% of anomaly
- Traditional nuclear corrections seem small
- What about modification of quark wavefunctions by the nuclear medium?
- EMC effect provides strong evidence these effects must exist
- Can medium modification of the nucleon explain the NuTeV anomaly?