The interplay of flavour- and Polyakov-loop-degrees of freedom
A PNJL model analysis

Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise

Physik Department
Technische Universität München

Thursday, August 14th, 2008

The QCD Critical Point
Institute for Nuclear Theory, Seattle
Connections between colour and flavour ($N_f = 2$ thermodynamics)

- Flavour blind dofs couple to up- and down- quark densities
- Up- and down- quark densities couple to flavour blind dofs
- Up- and down- quarks *communicate* via an intermediary: Polyakov loop dofs

Quantitative investigation of induced flavour mixing:

- NJL-model + Polyakov-loop model \rightarrow PNJL model
- A perturbative approach\(^1\) to investigate:
 - The Polyakov loop $\langle \Phi \rangle$ and its conjugate $\langle \Phi^* \rangle$
 - Non-vanishing up- and down-quark susceptibilities χ_{uu} and χ_{ud}

Conclusion & Outlook

\(^1\)R., Hell, Ratti, Weise arXiv:0712.3152 [hep-ph], [RHRW07]
Symmetry breaking patterns of QCD at finite T

<table>
<thead>
<tr>
<th>Chiral symmetry</th>
<th>Confinement-deconfinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Explicit breaking $m_q > 0$</td>
<td>1. Explicit breaking $m_q < \infty$</td>
</tr>
<tr>
<td>2. Dynamic breaking at low T</td>
<td>2. Dynamic breaking at high T</td>
</tr>
<tr>
<td>3. Order parameter: Chiral condensate $\langle \bar{q}q \rangle$</td>
<td>3. Order parameter: Polyakov loop $\langle \Phi^* \rangle$ and $\langle \Phi \rangle$</td>
</tr>
<tr>
<td>4. Quarks are coloured objects</td>
<td>4. Colour screening by vacuum fluctuations of quarks</td>
</tr>
</tbody>
</table>

- Dynamic quark masses \leftrightarrow Colour confinement

- Chiral symmetry breaking \leftrightarrow Z(3) symmetry breaking are closely linked

- Joint crossover transition
Modelling colour and flavour dynamics
The Polyakov loop extended Nambu and Jona-Lasinio model (PNJL model)

\[\text{NJL-model} + \text{Polyakov loop model} = \text{PNJL model} \]

Joint crossover of \(\langle \Phi \rangle \) and \(\langle \bar{q}q \rangle \)

\[\frac{\langle \bar{\psi}\psi \rangle}{\langle \bar{\psi}\psi \rangle_0} \]

\(T / T_c \)

\[\langle \Phi \rangle \]

PNJL: Joint effects of quarks and Polyakov loop
Confinement (colour) affecting quark densities

S. Rößner, N. Bratović, T. Hell, W. Weise

The interplay of flavour- and Polyakov-loop- degrees of freedom
Modelling colour and flavour dynamics

The Polyakov loop extended Nambu and Jona-Lasinio model (PNJL model)

NJL-model + Polyakov loop model = PNJL model

Joint crossover of $\langle \Phi \rangle$ and $\langle \bar{q}q \rangle$

Quark densities

$\mu = 0.55 T_c$

PNJL: Joint effects of quarks and Polyakov loop

Confinement (colour) affecting quark densities
Diagrammatic view to quark number densities

\[n_{q_x} = \frac{\partial \Omega}{\partial \mu_x} = \sum_{\omega_n} \int \frac{d^3p}{(2\pi)^3} \text{tr} \left[\frac{\partial S^{-1}}{\partial \mu_x} S \right] = \times \]

\[\Omega : \text{thermodynamic potential} \quad \Omega = \sum_{\omega_n} \int \frac{d^3p}{(2\pi)^3} \text{tr} \ln \left[\beta S^{-1} \right] \]

\[\times : \gamma_0 \tau_x, \text{where } \tau_x \text{ is a matrix in flavour space} \]

Quark number susceptibilities

\[\chi_{ux} \propto \langle n_u n_x \rangle - \langle n_u \rangle \langle n_x \rangle = \times - \times \times \]

\[\times = \gamma_0 \tau_u \quad \odot = \gamma_0 \tau_x \]

No explicit isospin breaking (thoughout this presentation)
Introduction of a perturbative interaction δU

$$\Omega = \Omega_{MF} + \delta U(\zeta) \quad (\Omega_{MF} \text{ indep. of } \zeta)$$

- Propagators remain unchanged
 - Use the same quasiparticles as in MF
- Quark density operators induce new Feynman rules:

$$\begin{align*}
-\cdots &= \frac{\partial S^{-1}}{\partial \zeta} \\
-\cdots &= \left[\frac{\partial^2 \delta U}{\partial \zeta \partial \zeta} \right]^{-1}
\end{align*}$$

Corrections to the susceptibilities:

- ζ couples to n_{qx}
 $$\zeta \xrightarrow{\text{charge conjugation}} -\zeta$$
- $\chi \propto \left[\frac{\partial^2 \delta U}{\partial \zeta \partial \zeta} \right]^{-1} \neq 0$

- ζ-susceptibility
 $$\chi \propto \left[\frac{\partial^2 \delta U}{\partial \zeta \partial \zeta} \right]^{-1} \sim a \delta \chi_{ud} \leftrightarrow n_{qx}$-susceptibility

a The mean field contribution of χ_{ud} vanishes due to flavour symmetry.
Polyakov loop degrees of freedom

- Polyakov loop $\Phi(\vec{x})$ is the trace of a time-like Wilson-line
 \[
 \Phi(\vec{x}) = \frac{1}{N_c} \text{tr}_c L(\vec{x}) \quad L(\vec{x}) = P \exp \left\{ i \int_0^\beta d\tau A^a_4(\vec{x}) t_a \right\}
 \]

- Order parameter for de-confinement
 \[\langle \Phi \rangle = 0 \iff \text{confined} \quad \langle \Phi \rangle \neq 0 \iff \text{deconfined}\]

- Define Polyakov loop fields with good charge conjugation parity:
 \[
 \Phi^+ = \frac{1}{2} \langle \Phi^* + \Phi \rangle \quad \Phi^- = \frac{1}{2} \langle \Phi^* - \Phi \rangle
 \]

QCD toy model (Ginzburg-Landau-type)

\[
S_{QCD}^{\text{eff}} = S_{QCD}^{\text{eff}, 0} + \delta U(\Phi^-)
\]

- Treat $S_{QCD}^{\text{eff}, 0}$ in mean field
- Treat δU pertubatively

\[
\chi_{ud} = \chi_{ud}^{MF} + \chi_{ud} \propto -\frac{\partial^2 S_{\text{eff}}}{\partial \mu_u \partial \Phi^-} \left[\frac{\partial^2 \delta U}{\partial \Phi^- \partial \Phi^-} \right]^{-1} \frac{\partial^2 S_{\text{eff}}}{\partial \mu_d \partial \Phi^-} < 0
\]

S. Rößner, N. Bratović, T. Hell, W. Weise

The interplay of flavour- and Polyakov-loop- degrees of freedom
Part 1: NJL model

\[\mathcal{L}_{NJL} = \bar{\psi} (\mathbf{p} - m_0) \psi - g (\bar{\psi} \gamma^\mu \lambda_a \psi) (\bar{\psi} \gamma_\mu \lambda_a \psi) \]

- Free quarks
- Integrated out gluons
- Local color current interaction
- Chiral symmetry

\[\text{Local SU}(3)_c \xrightarrow{\text{QCD}\rightarrow\text{NJL}} \text{Global SU}(3)_c \xrightarrow{\text{No confinement}} \]

Spontaneous chiral symmetry breaking

\[\Omega_{NJL} = \frac{\sigma^2 + N^2}{2G} - \frac{T}{2} \sum_{\omega_n} \int \frac{d^3 p}{(2\pi)^3} \text{Tr} \log S^{-1}(\omega_n, \mathbf{p}) \]

- Hartree-Fock approximation using Fierz-transformations
- Bosonization in channels with large 4-quark coupling

\[\sigma = G \langle \bar{\psi} \psi \rangle \quad M = m_0 - \sigma \quad N = -G \langle \bar{\psi} i \gamma_5 \tau_1 \psi \rangle \]

\[S^{-1} = \begin{pmatrix}
\mathbf{p} - M + \gamma_0 (\mu + \mu_1) & -i \gamma_5 N \\
-i \gamma_5 N & \mathbf{p} - M + \gamma_0 (\mu - \mu_1)
\end{pmatrix} \]

- No explicit isospin breaking terms (Zhang, Liu [ZL07])

The interplay of flavour- and Polyakov-loop- degrees of freedom
Part 2: Polyakov loop model

- Model for SU(3)$_c$-gauge theory ➞ Confinement
 ➞ 1$^{\text{st}}$-order ➞ Spontaneous breakdown of $Z(3)$-center sym.

Order parameter for de-confinement – Polyakov loop

- Polyakov loop $\Phi(\vec{x})$ is the trace of a time-like Wilson-line:

 \[
 \Phi(\vec{x}) = \frac{1}{N_c} \text{tr}_c L(\vec{x}) \quad L(\vec{x}) = \mathcal{P} \exp \left\{ i \int_0^\beta d\tau A^a_4(\vec{x}) t_a \right\}
 \]

 ➞ $\langle \Phi \rangle = 0 \iff$ confined ➞ $\langle \Phi \rangle \neq 0 \iff$ deconfined

Ginzburg-Landau effective potential $U = U(\Phi, \Phi^*, T)$

- Simplified loop: $\Phi = \frac{1}{N_c} \text{Tr} \exp \left\{ i A^a_4 t_a \right\} \quad a \in \{3, 8\}$
- Integrate out all dofs that do not change order parameters

 \[
 \int \mathcal{D}\Phi \int \mathcal{D}\Phi^* \ e^{-U(\Phi, \Phi^*, T)} = \int \mathcal{D}A \ e^{-S_{\text{eff}}(\Phi(A), \Phi^*(A), T)}
 \]
Polyakov loop model adjusted to lattice QCD data

Ansatz for the Polyakov loop potential (K. Fukushima [Fuk04])

\[
U(\Phi, \Phi^*, T) = -\frac{1}{2} b_2(T) \Phi^* \Phi + \frac{1}{4} b_4(T) \log [J(\Phi, \Phi^*)]
\]

\[
J(\Phi, \Phi^*) = 1 - 6\Phi^* \Phi + 4 \left(\Phi^*^3 + \Phi^3 \right) - 3 (\Phi^* \Phi)^2
\]

\[
b_4(T) = b_4 \left(\frac{T_0}{T} \right)^3 \quad b_2(T) = a_0 + a_1 \left(\frac{T_0}{T} \right) + a_2 \left(\frac{T_0}{T} \right)^2
\]

- Temperature dependent coupling strength \(b_2 = b_2(T) \)

G. Boyd et. al. [B96], O. Kaczmarek et. al. [KKPZ02, KZ05]

- \(\Phi^* = \Phi \) at \(N_f = 0 \): \(U(\Phi, \Phi^*, T) \) only fixed in \(\frac{1}{2}(\Phi^* + \Phi) \)

- Stiffness of \(U(\Phi, \Phi^*, T) \) in \(\frac{1}{2}(\Phi^* - \Phi) \) is free to be adjusted
Polyakov loop extended NJL (PNJL)

- Substitute the Matsubara frequencies ω_n by $\omega_n + A_4$
 - Formal substitution $\mu \rightarrow \mu - iA_4$ after Matsubara summation

$$\Omega_0 = \Omega_{NJL}|_{\mu \rightarrow \mu - iA_4} + U(\Phi, \Phi^*, T)$$

Defining mean field as 0\text{th} perturbative order

- Fermion sign problem: $\mu \rightarrow \mu - iA_4$ \Rightarrow $\Omega_0 = \frac{T}{V} S_E \in \mathbb{C}$
- Identification in 0\text{th} order: $p(T) = -\Omega_{MF}(T) + \Omega_{MF}(T=0)$
- Mean field: $\Omega_{MF} = \text{Re} \Omega_0$
 - Maximization of $|e^{-S_E/T}|$ ("quenched" mean field)

$$\frac{\partial \text{Re} \Omega_0}{\partial \sigma} = \frac{\partial \text{Re} \Omega_0}{\partial \Delta} = \frac{\partial \text{Re} \Omega_0}{\partial A_4^{(3)}} = \frac{\partial \text{Re} \Omega_0}{\partial A_4^{(8)}} = 0$$

- Constraints: $\Omega_{MF} \in \mathbb{R}$ \Rightarrow $\Phi_{MF} = \Phi_{MF}^* \ldots$
Polyakov loop extended NJL (PNJL)

Substitute the Matsubara frequencies ω_n by $\omega_n + A_4$

- Formal substitution $\mu \rightarrow \mu - iA_4$ after Matsubara summation

$$\Omega_0 = \Omega_{NJL}\big|_{\mu \rightarrow \mu - iA_4} + U(\Phi, \Phi^*, T)$$

Joint crossover of $\langle \Phi \rangle$ and $\langle \bar{q}q \rangle$

<table>
<thead>
<tr>
<th>T_c in MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaczmarek et al. [KZ05] ($N_f = 2$)</td>
</tr>
<tr>
<td>Cheng et al. [C+06] ($N_f = 2+1$)</td>
</tr>
<tr>
<td>PNJL ($N_f = 2$)</td>
</tr>
</tbody>
</table>

Polyakov loop extended NJL (PNJL)

- Substitute the Matsubara frequencies \(\omega_n \) by \(\omega_n + A_4 \)
 - Formal substitution \(\mu \rightarrow \mu - iA_4 \) after Matsubara summation
 \[
 \Omega_0 = \Omega_{\text{NJL}}|_{\mu \rightarrow \mu - iA_4} + U(\Phi, \Phi^*, T)
 \]

Joint crossover of \(\langle \Phi \rangle \) and \(\langle \bar{q}q \rangle \)

"PNJL-Confinement"

- Confinement at \(T < T_c \):
 - Polyakov loop \(\langle \Phi \rangle \ll 1 \)
 - Free quarks suppressed
- Statistical confinement:
 - Active (color-neutral) quasi-particles:
 \[
 m = 3M \approx M_N
 \]

S.Rößner, N. Bratović, T. Hell, W. Weise

The interplay of flavour- and Polyakov-loop- degrees of freedom
Corrections to the PNJL mean field solutions
“Unquenching” the PNJL model

Goal: Release constraints on the mean fields

- Integrate out the *approximate* order parameters (mean fields)
 - Subtile cancellation of imaginary parts is guaranteed

How? Perturbative expansion about the (constraint) MF solution

- Taylor expansion of the action with respect to the fields

\[
S = \frac{V}{T} \Omega_0 = \frac{V}{T} \sum_k \frac{1}{k!} \omega_k \xi^k \quad \text{with} \quad \xi = \tilde{\theta} - \tilde{\theta}_0
\]

- The vector arrow "\(\tilde{\cdot}\)"

- Set of all fields \(\tilde{\theta} = (\sigma, N, A_4^{(3)}, A_4^{(8)})^T\)

- \(\tilde{\theta}_0\) is the new minimum after SSB

- Separate free and perturbative parts:
 - Free part: \(k = 0, 1, 2\)
 - Interactions: \(k \geq 3\)

Note: \(\text{Im}[\omega_1] \neq 0\) for the (former) gauge field \(A_4^{(8)}\)
Expectation values of the Polyakov loop $\langle \Phi \rangle$ and $\langle \Phi^* \rangle$

In mean field MF + corrections

- $\langle \Phi \rangle_{\text{MF}} = \langle \Phi^* \rangle_{\text{MF}}$
- No split of $\langle \Phi \rangle$ and $\langle \Phi^* \rangle$
- $\langle \Phi \rangle \in \mathbb{R}$ and $\langle \Phi^* \rangle \in \mathbb{R}$
- $\langle \Phi \rangle \neq \langle \Phi^* \rangle$ at $\mu \neq 0$

Fluctuation effects beyond mean field produce $\langle \Phi \rangle \neq \langle \Phi^* \rangle$

Susceptibilities: c_{2u}^{uu}, c_{2u}^{ud}, c_{4u}^{uu}, c_{4u}^{ud} beyond mean field

\[c_n(T) = - \frac{1}{n!} \frac{\partial^n (\Omega / T^4)}{\partial (\mu / T)^n} \bigg|_{\mu = \mu_1 = 0} \]

\[c_{n}^{l}(T) = - \frac{1}{n!} \frac{\partial^n (\Omega / T^4)}{\partial (\mu_1 / T)^2 \partial (\mu / T)^{(n-2)}} \bigg|_{\mu = \mu_1 = 0} \]

\[c_{n}^{uu} = \frac{1}{4} (c_n + c_n^{l}) \]

\[c_{n}^{ud} = \frac{1}{4} (c_n - c_n^{l}) \]

- Isovector moments in agreement with lattice data as well

Lattice data: Allton et al. [A⁺05], Bielefeld-Swansea coll.
Susceptibilities: c^{uu}_4, c^{ud}_2, c^{uu}_4, c^{ud}_4 beyond mean field

\[c_n(T) = -\frac{1}{n!} \frac{\partial^n (\Omega / T^4)}{\partial (\mu / T)^n} \bigg|_{\mu = \mu_1 = 0} \]

\[c^l_n(T) = -\frac{1}{n!} \frac{\partial^n (\Omega / T^4)}{\partial (\mu / T)^2 \partial (\mu / T)^{(n-2)}} \bigg|_{\mu = \mu_1 = 0} \]

\[c^{uu}_n = \frac{1}{4} (c_n + c^l_n) \]

\[c^{ud}_n = \frac{1}{4} (c_n - c^l_n) \]

- Isovector moments in agreement with lattice data as well

Lattice data: Allton et al. [A⁺05], Bielefeld-Swansea coll.
Susceptibilities: c_{2}^{uu}, c_{2}^{ud}, c_{4}^{uu}, c_{4}^{ud} beyond mean field

$$c_n(T) = - \frac{1}{n!} \frac{\partial^n (\Omega/T^4)}{\partial (\mu/T)^n} \bigg|_{\mu=\mu_1=0}$$

$$c_n^{uu} = \frac{1}{4} (c_n + c_n^l)$$

$$c_n^{ud} = \frac{1}{4} (c_n - c_n^l)$$

Isovector moments in agreement with lattice data as well

Lattice data: Allton et al. [A+05], Bielefeld-Swansea coll.

S. Rößner, N. Bratović, T. Hell, W. Weise
Susceptibilities: $c_{22}^{uu}, c_{22}^{ud}, c_{44}^{uu}, c_{44}^{ud}$ beyond mean field

\[c_n(T) = -\frac{1}{n!} \frac{\partial^n(\Omega/T^4)}{\partial(\mu/T)^n} \bigg|_{\mu=\mu_1=0} \]

\[c_n^{uu} = \frac{1}{4} (c_n + c_n^I) \]

\[c_n^{ud} = \frac{1}{4} (c_n - c_n^I) \]

Isovector moments in agreement with lattice data as well

Lattice data: Allton et al. [A⁺05], Bielefeld-Swansea coll.

S. Rößner, N. Bratović, T. Hell, W. Weise

The interplay of flavour- and Polyakov-loop- degrees of freedom
Susceptibilities: $c_{uu}^2, c_{ud}^2, c_{uu}^4, c_{ud}^4$ beyond mean field

\[c_n(T) = -\frac{1}{n!} \frac{\partial^n(\Omega/T^4)}{\partial(\mu/T)^n} \bigg|_{\mu=\mu_1=0} \]

\[c_n^{\mu\mu} = \frac{1}{4} (c_n + c_n^l) \]

\[c_n^{\mu\text{ud}} = \frac{1}{4} (c_n - c_n^l) \]

Isovector moments in agreement with lattice data as well

Lattice data: Allton et al. [A^+05], Bielefeld-Swansea coll.

S.Rößner, N. Bratović, T. Hell, W. Weise

The interplay of flavour- and Polyakov-loop- degrees of freedom
Polyakov loop effective potential adjusted at $N_f = 0$

$$\frac{\delta U(\Phi, \Phi^*, T)}{T^4} \propto \Phi^* \Phi = \frac{\Phi^2 - \Phi^{-2}}{4} \rightarrow \frac{\Phi^2 - k \Phi^{-2}}{4}$$

Thermodynamics unchanged by varying k

c_{2}^{ud} with modified Φ^--potential

Φ^- at $\mu > 0$

Φ^--dof $\Rightarrow c_{2}^{ud} < 0$
c_{2}^{ud} controlled by $\Phi^{-} = \frac{1}{2} \langle \Phi^{*} - \Phi \rangle$

Φ^{-} around $\mu = 0$

c_{2}^{ud} normalized to Φ^{-}-variation

Variations of Φ^{-} are responsible for $c_{2}^{ud} < 0$.

Lattice: Döring [PhD Thesis]

Universal for varying k
Susceptibilities χ_{ud} beyond mean field

\[\frac{\chi_{ux}(T, \mu)}{T^2} = 2c_{2}^{ux} + 12c_{4}^{ux} \left(\frac{\mu}{T} \right)^2 + 30c_{6}^{ux} \left(\frac{\mu}{T} \right)^4 + \cdots \] \quad \text{with } x \in \{ u, d \}

- Fluctuation effects: $\chi_{ud} \neq 0$

Lattice data: Allton et al. [A⁺05], Bielefeld-Swansea coll.
Susceptibilities χ_{ud} beyond mean field

$$\chi_{ud}/\chi_{uu} \text{ beyond MF}$$

$$\chi_{ux}(T, \mu) = 2c_2^{ux} + 12c_4^{ux} \left(\frac{\mu}{T} \right)^2 + 30c_6^{ux} \left(\frac{\mu}{T} \right)^4 + \cdots \quad \text{with } x \in \{u, d\}$$

- Fluctuation effects: $\chi_{ud} \neq 0$

Lattice data: Allton et al. [A+05], Bielefeld-Swansea coll.
Conclusion

PN JL:
- Chiral symmetry breaking
- Confinement
- Entanglement of chiral and deconfinement crossover

Perturbative approach used to investigate
- Polyakov loop: $\langle \Phi \rangle \neq \langle \Phi^* \rangle$ at $\mu \neq 0$
- Isovector susceptibilities

Variations of Φ^- are responsible for $c_{2ud} < 0$
- Stiffness of Polyakov loop effective potential directly governs c_{2ud}
- c_{2ud} contains information about Polyakov loop effective potential

Outlook
- $2 + 1$ flavors
- Extract Polyakov loop effective potential using c_{2ud} from the lattice
Thank you for your attention

We thank
the BMBF, GSI, INFN, by the DFG excellence cluster “Origin and Structure of the Universe”
and the Elitenetzwerk Bayern
for supporting this work.

