What can we learn from model studies on the chiral critical end-point?

– Old and New Perspectives –

Kenji Fukushima
Yukawa Institute for Theoretical Physics
Kyoto University

July 2008 at INT
Discovery in Old Days

- Color Confinement – Deconfinement
 - Center Symmetry
 - 2-Color – Second-Order 3-Color – First-Order
 - High Baryon Density?

- Chiral Effective Model
 - Chiral Symmetry
 - 2-Flavor – Second-Order 3-Flavor – First-Order
 - Mesons, Baryons **sigma-model**
 - Quarks **NJL-model**
Thermodynamic Potential

Thermodynamic Potential in the NJL Model

- **Condensation Energy**

\[
\Omega_{\text{cond}} = g_S (\langle \bar{u}u \rangle^2 + \langle \bar{d}d \rangle^2 + \langle \bar{s}s \rangle^2) + 4g_D \langle \bar{u}u \rangle \langle \bar{d}d \rangle \langle \bar{s}s \rangle
\]

- **Zero-Point Energy** (responsible for chiral symmetry breaking)

\[
\Omega_{\text{zero}} = -2N_c \sum_i \int \frac{d^3p}{(2\pi)^3} \varepsilon_i(p)
\]

- **Thermal Energy**

\[
\Omega_{\text{quark}} = -2T \sum_i \int \frac{d^3p}{(2\pi)^3} \left\{ \ln \det \left[1 + L e^{-\left(\varepsilon_i(p) - \mu\right)/T} \right] \right. \\
+ \left. \ln \det \left[1 + L^\dagger e^{-\left(\varepsilon_i(p) + \mu\right)/T} \right] \right\}
\]
Why First-Order?

Some Numerics

\[M_{ud} = 336 \text{ MeV}, \; \mu_c = 345 \text{ MeV}, \; T = 0 \]

Increasing \(\mu \)

- \(\mu < 336 \text{ MeV} \) \(n_B = 0 \) nothing changed

- \(336 \text{ MeV} < \mu < 345 \text{ MeV} \) \(n_B \neq 0 \)

\[p \propto (\mu^2 - M^2)^2, \quad f \propto 2 \mu^2 M^2 - M^4 \]

on top of \(f = -c_2 M^2 + c_4 M^4 + c_6 M^6 \)

- \(\mu > 345 \text{ MeV} \)

\[n_B \neq 0, \quad p \propto (\mu^2 - m^2)^2 \]

July 2008 at INT
Some People Claim

Density-Density Interaction Changes

\[\mathcal{L}_V = -g_V (\bar{\psi} \gamma_\mu \psi)^2 \rightarrow f \sim g_V n_q^2 \propto \mu^2 (\mu^2 - M^2)^2 \]

NJL Results Kitazawa-Koide-Kunihiro-Nemoto (2002)
Some More from NJL

NJL Results Sasaki-Frimon-Redlich (2006)

So far all the discussions are limited to two-flavor quark matter in the NJL model.

July 2008 at INT
Degrees of Freedom

- **Quark Degrees of Freedom**
 - Two-Flavor Case
 \[(7/8) \times 3 \times 2 \times 4 = 21\]
 - Three-Flavor Case
 \[(7/8) \times 3 \times 3 \times 4 = 31.5\]

- **Gluon Degrees of Freedom**
 \[8 \times 2 = 16\]

The NJL model description is not bad, but the gluon contribution is comparable also.

July 2008 at INT
Quick History (only limited milestones)

- **Fukushima 2003**
 Simultaneous crossover of deconfinement and chiral restoration

- **Ratti-Thaler-Weise 2005**
 Fitting the thermodynamic quantities on the lattice

- **Fu-Zhang-Liu 2007**
 Ciminale-Gatto-Ippolito-Nardulli-Ruggieri 2007
 Fukushima 2008
 2+1 flavor with 't Hooft interaction

It works much better than I thought...
Neat Properties

- Degrees of freedom are different!
 - 16 gluons at high T should be transverse.
 - Polyakov loop is A_0 that is longitudinal.

Polyakov loop saturates the thermodynamics near T_c.

- No clear way to fix the Polyakov-loop potential?
 - Pressure, entropy, internal energy fitting.
 - Simple parametrization with T_c fixing.

Little sensitivity to the choice of the potential.
Model Ingredients

Thermal Energy

\[
\Omega_{\text{quark}} = -2T \sum_i \int \frac{d^3p}{(2\pi)^3} \left\{ \ln \det \left[1 + L e^{-\left(\varepsilon_i(p) - \mu\right)/T} \right] \\
+ \ln \det \left[1 + L^\dagger e^{-\left(\varepsilon_i(p) + \mu\right)/T} \right] \right\}.
\]

Polyakov-Loop Potential

\[
\Omega_{\text{Polyakov}} = -b \cdot T \left\{ 54 e^{-a/T} \ell \bar{\ell} \\
+ \ln \left[1 - 6 \ell \bar{\ell} - 3(\ell \bar{\ell})^2 + 4(\ell^3 + \bar{\ell}^3) \right] \right\}
\]

\(a\) determines the pure-gluonic \(T_c = 270\text{MeV}\)

\(b\) determines the simultaneous crossover \(T_c = 200\text{MeV}\)

No information on bulk thermodynamic quantities

July 2008 at INT
Thermodynamics at Zero Density

Interaction Measure

2+1 flavor PNJL

Lattice Data
Cheng et al.

July 2008
More on Thermodynamics

(A part of) Sound Velocity

2+1 flavor PNJL

Lattice Data
Cheng.et al.

July 2008 at INT
More and More

4^{th} order Cumulant

![Graph showing the susceptibility ratio $\chi_q(4)/\chi_q$ as a function of temperature T in MeV. The graph displays a sharp decrease around $T = 200$ MeV, illustrating the behavior of the susceptibility ratio at higher temperatures.]
Strong correlation is evident, but!
the Polyakov loop stays small at low temperature.
Susceptibility

(Light-Quark) Chiral and Quark Number Susceptibility

July 2008 at INT
Prediction from the PNJL

Zero Polyakov Loop at Zero Temperature

\[
\langle \text{det} [1 + L e^{-(\varepsilon - \mu)/T}] \rangle = 1 + e^{-3(\varepsilon - \mu)/T} + 3 l e^{-(\varepsilon - \mu)/T} + 3 \bar{l} e^{-2(\varepsilon - \mu)/T}
\]

\[
\langle \text{det} [1 + L^{\dagger} e^{-(\varepsilon + \mu)/T}] \rangle = 1 + e^{-3(\varepsilon + \mu)/T} + 3 \bar{l} e^{-(\varepsilon + \mu)/T} + 3 l e^{-2(\varepsilon + \mu)/T}
\]

dominant!

Degenerate quark matter with all colors equally occupied does not break global center symmetry.

No Deconfinement at High Density

Quark matter with \(\langle \bar{\psi} \psi \rangle \approx 0, \ l \approx 0, \ n \neq 0 \)

Quarkyonic Matter
McLerran-Pisarski (2007)

July 2008 at INT
Evidence?

Talk by Simon Hands at XQCD (2-color simulation)

Order Parameters

Superfluid condensate approaches BCS scaling as μ increases.

Polyakov loop ≈ 0 throughout – no deconfinement!

Due to poor signal:noise? Or has it disappeared?
Phase Diagram

Without Color Superconductivity

With Color Superconductivity

Z. Zhang will surprise you with three critical-end-points.

July 2008 at INT
Do not ask me a question...

Zhang-Fukushima-Kunihiro (coming soon)

July 2008 at INT
Model Assumptions

Polyakov Loop treated as a Mean Field.
- Cannot describe the spatial correlations correctly.
- Sign Problem not completely resolved...

Bulk thermodynamics is OK.

Parameters fixed at $T=\mu=0$
- No new interaction induced?
- No coupling running with T and μ.

Four-coupling as a result of dressed (heavy) gluons is OK unless at high T or μ.
There are two dangerous parts...
Dangerous Parts

Interaction Directly Coupled to Density

\[\mathcal{L}_V = -g_V (\bar{\psi} \gamma_\mu \psi)^2 \]

Fierz trans generates various interaction channels. Wave-function may have a larger component at finite density.

Interaction Induced by Anomaly (Instanton)

\[\mathcal{L}_A = g_D \left[\text{det} \bar{\psi} (1 - \gamma_5) \psi + \text{h.c.} \right] \]

Instanton excitation should be suppressed at finite \(T \) and \(\mu \). Effective \(U_A(1) \) symmetry restoration.
Columbia Plots

First-Order Regions
Their Effects

Shift of the Critical Point

July 2008 at INT
What Model Studies Can Say

- There IS a critical end-point.
 - Some reasonable model parameters lead to existence of a critical end-point on the phase diagram.

- There IS NOT a critical end-point.
 - Some other model parameters within reasonable range lead to non-existence of a critical point.

- There ARE more critical end-points.
 - Some other dynamics at high density lead to more than one (up to three!) critical end-points.

July 2008 at INT
Still Useful Way to Go

Meaningful Approach (Attitude)
- Let us assume one of them.
- We can see what happens in the model.
- Model prediction based on a scenario.

One Critical End-Point (standard picture)
- Let us accept “reasonable model parameters.”
- We can see the isentropic trajectories on the phase diagram.
- Model prediction for the “hydrodynamical” evolution.
Isentropic Trajectories

$s/n = \text{constant lines}$

Critical region is very small and neglected. Then, nothing is special around the end-point.
Strangeness-free Isentropic Trajectories

n_s must be zero in the heavy-ion collision

Positive μ_s is necessary, why so?
PNJL model can answer!

Lattice Data
MILC 2008

July 2008 at INT
Qualitative Comparison II

Heavy Quark Sector

Graphs showing the relationship between temperature and quark chemical potential, with data points for different values of μ_h at specified T values.
Polyakov Loop Feedback

Particle-rich state favors anti-Polyakov-loop.

\[\ell = \frac{1}{N_c} \langle \text{tr} L \rangle, \quad \bar{\ell} = \frac{1}{N_c} \langle \text{tr} L^\dagger \rangle \quad \bar{l} > l \text{ for } \mu > 0 \]

Anti-Polyakov-loop acts as a negative chem. pot.

\[
\Omega_{\text{quark}} = -2T \sum_i \int \frac{d^3p}{(2\pi)^3} \left\{ \ln \det \left[1 + L e^{-(\bar{\epsilon}_i(p)-\mu)/T} \right] \\
+ \ln \det \left[1 + L^\dagger e^{-(\bar{\epsilon}_i(p)+\mu)/T} \right] \right\}.
\]

Positive chem. pot. is necessary.

\[\log(\bar{l}/l) \approx 2\mu_s/T \]

July 2008 at INT
Polyakov Loop Difference

Difference and Ratio

\[\bar{l} - l \quad \log(\bar{l}/l) \]
Summary

- PNJL model can reproduce bulk thermodynamic properties at zero density.
- PNJL model can give predictions for finite density.
- Two model parameters, the coupling strength of the vector-channel interaction and the magnitude of 't Hooft term, are not under theoretical control.
- Under assumption of one critical end-point, PNJL model can draw isentropic trajectories.
- Strangeness-free isentropic trajectories are close to ones with no such constraint.
- Anti-Polyakov-loop induces strange chem. pot.

July 2008 at INT