Spectral functions near the QCD critical point in chiral models

H. Fujii

HF, PRD67, 094018
HF-M.Ohtani, PRD70, 014016
Introduction

- LQCD + Models suggested the QCD-CP in $T-\mu$
 - cross-over along T axis
 - 1^{st} order along μ axis
Introduction

- LQCD + Models suggested the QCD-CP in $T-\mu$
 - cross-over along T axis
 - 1st order along mu axis
- Difficult to conclude in LQCD+Models today
 - about the location
 - about the existence
- Needs for exp'tal signatures / confirmation
 - What is the characteristics of the QCD-CP?
 - fluctuations, focusing, particle ratios, ..., etc.
How to use chiral models

- Difficult to locate the QCD-CP in T_μ
- But, generic features of the CP can be demonstrated in the (simplest) models

- What are the spectral properties of QCD-CP?
model

- **NJL** (and other chiral models)

\[\mathcal{L} = \bar{q}(i\slashed{D} - m)q + g\left[(\bar{q}q)^2 + (\bar{q}i\gamma_5 \tau^a q)^2 \right] \]

- simplest quark dynamics
- chiral symmetry breaking by q^bar-q attraction
- no dynamic gluons, no confinement (nucleons)
- σ and π as fluct of $<q^\text{bar}q>$
Chiral transition

- order parameter $\langle q^\text{bar} q \rangle \sim \langle \sigma \rangle$
 - $=0$ in Wigner, $\neq 0$ in NG phase
- flat potential at CP
- chiral susceptibility
 - $\chi_{mm} \sim \int d^3 r \frac{e^{-Mr}}{r} \sim \frac{1}{M^2} \rightarrow \infty$
 - long-range fluctuation
 - M: screening mass
- $\chi_{\mu\mu}$, C finite
CP with nonzero m

- Across co-existence surface (Clapeyron-Clausius)
 \[
 \frac{dT}{d\mu} = -\frac{\Delta n}{\Delta s}, \quad \frac{dT}{dm} = -\frac{\Delta \sigma}{\Delta s}
 \]

- Order parameter = deviations from equilibrium σ, n, or s
 - linear mixing due to finite m

- χ_{mm}, $\chi_{\mu\mu}$, and C diverge
χ's & spectral change

• strong $q^{\text{bar}} - q$ attraction generates the CP
 – Which mode softens?
\(\chi_{mm} \) & dropping mass

- Spectral fn near O(4) CP
 - \[\chi_{mm}(q) = \int \frac{d\omega}{2\pi} \frac{\rho_{mm}(\omega, q)}{\omega} \]
 - dynamic \(\sigma \)-mode as time-like excitation
 - space-like (p-h) mode characteristic in a medium

\[\rho_{mm}/A^2 \]

\(T > T_c \)
\(\chi_{mm} \) & dropping mass

- Spectral fn near O(4) CP
 \[\chi_{mm}(q) = \int \frac{d\omega}{2\pi} \frac{\rho_{mm}(\omega, q)}{\omega} \]
 - in approach from broken phase, space-like mode mixes in at \(q=0 \) because of nonzero \(M \)

\(T>T_c \) & \(T<T_c \)
\(\chi_{mm} \) & dropping mass

- Spectral fn near O(4) CP
 \[\chi_{mm}(q) = \int \frac{d\omega}{2\pi} \frac{\rho_{mm}(\omega, q)}{\omega} \]
 - in approach from broken phase, space-like mode mixes in at \(q=0 \) because of non-zero \(M \)

\[R = \text{sp-mode / total} \]

Sp-mode gives finite fraction of divergence

\[T<T_c \]
\[\chi_{mm} \& \text{dropping mass} \]

- **Toward the TCP**
 - space-like mode enhances

\[R = \text{sp-mode / total} \]

Sp-mode saturates the sum at TCP

\[T < T_c \]
χ_{mm} & dropping mass

- Toward the TCP
 - quark number $\chi_{\mu\mu}$ diverges

\[
\begin{array}{c}
\text{Graph: } \\
\chi_{\mu\mu}/\Lambda^2 \\
\end{array}
\]

\[
\begin{array}{c}
\text{Diagram: } \\
T<T_c
\end{array}
\]
CP with nonzero m

- mass of sigma?
 - Scavenius et al. posed a [Q]:

![Graph showing meson masses as functions of temperature for different chemical potentials](image)

FIG. 6. The sigma mass (solid line) and pion mass (dashed line) in the sigma model (left) and NJL model (right) as functions of temperature for $\mu = 0$ (right pair) and for $\mu = \mu_c$ (left pair).
CP with nonzero m

- mass of sigma?
 - Scavenius et al. posed a [Q]:
 - comparing different things
 - screening vs pole masses

PRC64, 045202

![Graphs showing meson masses as functions of temperature for different values of μ.](image)

FIG. 6. The sigma mass (solid line) and pion mass (dashed line) in the sigma model (left) and NJL model (right) as functions of temperature for $\mu = 0$ (right pair) and for $\mu = \mu_c$ (left pair).
CP with nonzero m

- Divergent χ's due to p-h mode
 - no dropping mass!

(a) scalar

(b) quark number
Why is p-h mode enhanced?

- $\chi_{\mu\mu} =$ fluctuation of conserved density
 - cannot fluctuate at $q=0$ (total charge)
 - $\omega \sim D q^2$
 - $\lim_{q \to 0} \rho_{\mu\mu}(\omega, q) \propto \omega \delta(\omega)$
 - strength diverges as approaching QCD-CP
Why is p–h mode enhanced?

- Schematic sketch

\[\lim_{q \to 0} \sigma \propto \omega \]

\[\omega \quad \text{w/ exact chiral symmetry} \]
\[\omega \quad \text{w/ non-zero quark mass} \]

\[\omega \quad \text{drop} \]
\[\sigma \quad \text{hydro-modes} \]
\[\omega/\Lambda \quad \text{mix & repel} \]
\[\omega \quad \text{hydro-modes} \]
Implications to HIC

- Critical softening in p-h mode
 - decoupling of σ meson (ω meson as well)
 - no direct access to dileptons, $\pi\pi$
 - particle scattering may produce γ^*
 - low pT dist. of scattered particles
 - standard ...
Dynamic Universality

- Static universality
 - 3D Z(2) Ising

- Dynamics constrained by conservation laws
 - possible slow modes near QCD-CP
 - σ, π massive due to m_q = 0
 - T^0, n ... 5 densities
 - decoupling of σ due to finite m
 - slow modes = sound (2), shear (2), heat (1) = liq.gas
Hints to phenomenology

- within critical region of gas-liquid CP
 - mode-coupling between hydro-modes important
 - shear viscosity diverges, but only very weakly
 - \(\eta \sim \xi^{(1/19)} \epsilon \),
 - thermal conductivity diverges
 - \(\lambda \sim \xi^{(18/19)} \epsilon \), \(\omega \sim \xi^{-3} \)

- But, finite size and time in HIC set the limit to these critical effects?
 Berdnikov-Rajagopal
Summary

- Model demonstrates:
 - sigma softens near chiral CP, and p-h mode contributes too if approached from broken phase
 - near QCD-CP, p-h mode saturates the divergence
- Critical mode has p-h type spectrum
- Dynamic Universality is the same as liq.-gas
 - η & λ diverge
 - finite size/time may limit the critical behavior
Region of spectrum

- vacuum
Region of spectrum

- mass modification
Region of spectrum

- medium fluctuation