QCD Critical Point and
Its Effect on Physical Observables

Masayuki Asakawa

Department of Physics, Osaka University

in collaboration with C. Nonaka, B. Müller, S.A. Bass

August 2008
QCD Phase Diagram

160-190 MeV
100 MeV ~ 10^{12} K

Hadron Phase
- chiral symmetry breaking
- confinement

QGP (quark-gluon plasma)

RHIC

LHC

CEP (critical end point)
crossover
1st order

CSC (color superconductivity)

5-10 \rho_0

\mu_B

M. Asakawa (Osaka University)
Nuclear Physics A504 (1989) 668-684
North-Holland, Amsterdam

CHIRAL RESTORATION AT FINITE DENSITY AND TEMPERATURE

Masayuki ASAKAWA and Koichi YAZAKI

Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Received 2 May 1988
(Revised 24 April 1989)

Fig. 8. The phase transition line in the cases (I) and (II).
Where is CEP, if any?
CEP = 2nd order phase transition, but...

- **CEP = 2nd Order Phase Transition Point**
- **Divergence of Fluctuation**
- **Correlation Length**
- **Specific Heat ?**

If expansion is adiabatic, even if the system goes right through the critical end point...

There is no conservation law that slows down the change of those quantities!

Subject to Final State Interactions

M. Asakawa (Osaka University)
Furthermore...

Furthermore, critical slowing down limits the size of fluctuation, correlation length!

Time Evolution along given isentropic trajectories ($n_B/s : fixed$)

\[\frac{d}{dt} m_\sigma(\tau) = -\Gamma[m_\sigma(\tau)] \left(m_\sigma(\tau) - \frac{1}{\xi_{eq}(\tau)} \right) \]

\[\Gamma[m_\sigma(\tau)] = \frac{A}{\xi_0} \left(m_\sigma(\tau) \xi_0 \right) \]

\[z \approx 3 \quad \text{Model H (Hohenberg and Halperin RMP49(77)435)} \]
Principles to Look for Other Observables

- We are in need of observables that are not subject to final state interactions.

After Freezeout, no effect of final state interactions.

Chemical Freezeout

- Usually assumed momentum independent.
- But this is not right.

Chemical freezeout time: p_T (or y_T) dependent.

- Larger p_T (or y_T), earlier ch. freezeout.

Principle I

M. Asakawa (Osaka University)
Emission Time Distribution

Au+Au, $E_{\text{lab}}=40$ GeV/A

Emission Time

- Larger β_T, earlier emission
- No CEP effect (UrQMD)

![Graph showing emission time distribution with different emission time bins and labels for protons and anti-protons with specific β_T values.]
Principle II

Universality:

QCD CEP belongs to the same universality class as 3d Ising Model

Lattice QCD at finite density: still in its infancy

For critical behavior: need to carry out $V \rightarrow \infty$ limit

\[T \text{ and } \mu_B \leftrightarrow (T, \mu_B) \leftrightarrow (r, h) \]

\[r = \frac{T - T_C}{T_C} \]

\[h : \text{external magnetic field} \]
What is not universal

Further Assumptions

- Size of Critical Region
 - No general universality
 - Lattice calculation: not yet $V \to \infty$ limit
 - Renormalization group analysis in Effective Models?

Mapping

$\vec{r} \perp \vec{h}$
$\vec{r} \parallel$ 1st order PT line is not an assumption

M. Asakawa (Osaka University)
EOS on Ising Side

Critical Behavior on Ising Side

- parametric representation

\[M = M_0 R^\beta \theta \]
\[r = R(1 - \theta^2) \]
\[h = h_0 R^{\beta \delta} h(\theta) = h_0 R^{\beta \delta} (\theta - 0.76201 \theta^3 + 0.00804 \theta^5) \]

\((R \geq 0, -1.154 \leq \theta \leq 1.154)\)

Condition for \(M_0\) and \(h_0\)

\[M(r, h) = 1 \text{ at } (r, h) = (0, 1) \]
\[M(r, h) = 1 \text{ at } (r, h) = (-1, 0) \]

\[r = \frac{T - T_C}{T_C} \]
\[h : \text{external magnetic field} \]
\[\beta = 0.326 \]
\[\delta = 4.8 \] (Critical Exponents)

R. Guida and J. Zinn-Justin, NPB486 (1997) 626
Singular Part + Non-singular Part

- Matching between Hadronic and QGP EOS

 - Entropy Density consists of *Singular and Non-Singular Parts*

 - **Only Singular Part** shows universal behavior

- Requirement:

 reproduce both the singular behavior and known asymptotic limits

- Matched Entropy Density

\[
s_{\text{real}} = (T, \mu_B) = \frac{1}{2} \left\{ 1 - \tanh \left[S_c(T, \mu_B) \right] \right\} s_H(T, \mu_B) + \frac{1}{2} \left\{ 1 + \tanh \left[S_c(T, \mu_B) \right] \right\} s_Q(T, \mu_B)
\]

- Dimensionless Quantity: \(S_c \)

\[
S_c(T, \mu_B) = s_c(T, \mu_B) \sqrt{\left(\Delta T_{\text{crit}} \right)^2 + \left(\Delta \mu_{\text{crit}} \right)^2} \times D
\]

\(D \): related to extent of critical region

* M. Asakawa (Osaka University)
Isentropic Trajectories

- In each volume element, Entropy (S) and Baryon Number (N_B) are conserved, as long as entropy production can be ignored (= when viscosities are small)

Isentropic Trajectories (n_B/s = const.)

An Example

Near CEP s and n_B change rapidly

isentropic trajectories show non-trivial behavior

Bag Model EOS case
With Large Critical Region

Focusing of Isentropic Trajectories

with CEP

without CEP (EOS in usual hydro calculation)

Excluded Volume Approximation + Bag Model EOS

used in most hydro calculations

M. Asakawa (Osaka University)
Consequence

For a given chemical freezeout point, prepare three isentropic trajectories: w/ and w/o CEP

Along isentropic trajectory:

- FO, CO $\frac{\mu_B}{T}$
- QCP $\frac{\mu_B}{T}$

As a function of $p_T(y_T)$:

- FO, CO $\frac{\mu_B}{T}$
- QCP $\frac{\mu_B}{T}$

\overline{p}/p ratio: near CEP steeper

M. Asakawa (Osaka University)
Evolution along Isentropic Trajectory

\[\frac{\bar{p}}{p} \sim \exp \left(-\frac{2\mu_B}{T} \right) \]

with CEP steeper \(\bar{p} \) spectra at high \(P_T \)

\[M. \text{ Asakawa (Osaka University)} \]
Effect on Spectra?

steeper \bar{p} spectra at high P_T

NA49, PRC73, 044910(2006)

M. Asakawa (Osaka University)
Result of One Temperature Fit

- Only one experimental result for \bar{p} slope
- Still error bar is large

M. Asakawa (Osaka University)
Summary

- Two Principles:
 i) Chemical Freezeout is $p_T(\beta_T)$ dependent
 ii) Isentropic Trajectory behaves non-trivially near CEP (focusing)

 \bar{p}/p ratio behaves non-monotonously near CEP

 Information on the QCD critical point:
 such as location, size of critical region, existence...

- We then made a data search
 - turned out NA49 \bar{p} data shows non-trivial behavior around 40 GeV/A
 - still error bar is large, finer energy scans at SPS, FAIR, RHIC: desirable

- Effect on Flow?
 c_s changes differently from the case with EOS used in usual hydro cal.
 (3D hydro cal. with CEP + UrQMD: C. Nonaka in progress)