Coupled-Cluster theory for Nuclei

Gaute Hagen\(^1\)
Collaborators: D. Dean, M. Hjorth-Jensen, A. Nogga, T. Papenbrock, A. Schwenk

\(^1\)Oak Ridge National Laboratory, Physics Division, E-mail: hageng@ornl.gov

INT, June 30, 2008
1. Status and goals in microscopic nuclear structure approaches
2. Coupled Cluster approach to nuclear structure
3. Coupled-Cluster in J-coupled scheme
 - CCSD results with “bare” chiral interactions applied to ^{16}O, ^{40}Ca, ^{48}Ca and ^{48}Ni
4. Coupled Cluster for open quantum systems
 - CCSD calculation of Helium chain
 - Charge radii and densities in ^{4}He and ^{8}He
5. Conclusion and Perspectives
Ab-initio approaches to light and medium mass nuclei
1. Coupled Cluster Theory is **fully microscopic**.
2. Coupled Cluster is **size extensive**. No unlinked diagrams enters, and error scales linearly with number of particles.
3. Low computational cost (CCSD scales as $n_o^2 n_u^4$).
4. Capable of systematic improvements.
5. Amenable to parallel computing.
Exponential Ansatz for Ψ

$$|\Psi\rangle = e^{\hat{T}}|\Phi_0\rangle, \quad \hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_A$$

$$\hat{T}_1 = \sum_{i,a} t_i^a \hat{a}_a ^\dagger \hat{a}_i, \quad \hat{T}_2 = \frac{1}{2} \sum_{i<j,a<b} t_{ij}^{ab} \hat{a}_a ^\dagger \hat{a}_b ^\dagger \hat{a}_j \hat{a}_i.$$

Coupled Cluster Equations

$$\Delta E = \langle \Phi_0 | (H_N \exp(T))_C | \Phi_0 \rangle$$

$$0 = \langle \Phi_p | (H_N \exp(T))_C | \Phi_0 \rangle$$

$$\tilde{H} = (H_N \exp(T))_C$$

Iterative CCSDT-n approximations to full CCSDT

$$\text{CCSDT} - 1 \quad 0 = \langle \Phi_{ijk}^{abc} | (F_N T_3 + H_N T_2)_C | \Phi_0 \rangle$$

$$\text{CCSDT} - 2 \quad 0 = \langle \Phi_{ijk}^{abc} | (F_N T_3 + H_N T_2 + H_N T_2^2/2)_C | \Phi_0 \rangle$$

$$\text{CCSDT} - 3 \quad 0 = \langle \Phi_{ijk}^{abc} | (F_N T_3 + H_N \exp(T_1 + T_2))_C | \Phi_0 \rangle$$

$$\text{CCSDT} \quad 0 = \langle \Phi_{ijk}^{abc} | (H_N \exp(T_1 + T_2 + T_3))_C | \Phi_0 \rangle$$
Motivation
Coupled-Cluster approach to nuclear structure
Spherical CCSD
Open quantum systems
Conclusion and Perspectives

Coupled Cluster in pictures

\[|\Psi\rangle = e^{T(A)} \Phi \], \quad T^{(A)} = \sum_{k=1}^{m_A} T_k \]

\[T_1 = \sum_{i \atop a} t^a_i |\Phi_{a i}\rangle, \quad T_2 = \sum_{i \atop a > b} t^{a b}_{i j} |\Phi_{a b i j}\rangle, \quad T_3 = \sum_{i \atop a > b > c} t^{a b c}_{i j k} |\Phi_{a b c i j k}\rangle \]
Spherical Coupled-Cluster Approach

- In a J-coupled scheme the cluster operator is a scalar under rotation, and depends only on reduced amplitudes. Thus,

\[\hat{T}_1 = \sum_{j_i, j_a} t_{j_i}^{j_a} (a_{j_a}^\dagger \times \tilde{a}_{j_i})^{(0)}, \]

\[\hat{T}_2 = \sum_{j_i, j_j, j_a, j_b, J} t_{j_i, j_j}^{j_a, j_b} (J) (a_{j_a}^\dagger \times a_{j_b}^\dagger)^{(J)} \cdot (\tilde{a}_{j_j} \times \tilde{a}_{j_i})^{(J)}. \]

- \(j_i \) and \(j_a \) denote the spin of the occupied and unoccupied subshells.

- A naive estimate shows that a model space of \(n_o + n_u \) single-particle states consists of \((n_o + n_u)^{2/3} \) \(j \)-shells. Computational effort approximately reduced by a power \(2/3 \) within the spherical scheme compared to the \(m \)-scheme.
Spherical Coupled-Cluster Approach

Speedup of J-coupled CCSD code for ^{40}Ca as compared to m-scheme CCSD code.

![Graph showing speedup of J-coupled CCSD code for ^{40}Ca as compared to m-scheme CCSD code.](image)
We have derived and implemented CCSD in a J-coupled scheme.

- Computational cost drastically reduced, from $n_o^2 n_u^4$ to $n_o^{4/3} n_u^{8/3}$.
- Large overbinding due to omitted three-body forces.

CCSD results for 40Ca and 56Ni using $V_{\text{low}-k}$.
CCSD results for 40Ca and 56Ni using V-SRG

Converged results for 40Ca and 56Ni, using N3LO evolved down to $\lambda = 2.5\text{fm}^{-1}$ from similarity renormalization group theory. Large overbinding due to omitted three- and many-body forces.

![Graphs showing CCSD results for 40Ca and 56Ni](image)
^{16}O, ^{40}Ca, ^{48}Ca and ^{48}Ni with "bare" chiral interactions

Coupled-Cluster theory for Nuclei
Motivation
Coupled-Cluster approach to nuclear structure
Spherical CCSD
Open quantum systems
Conclusion and Perspectives

Spherical CCSD

16O, 40Ca, 48Ca and 48Ni ground state densities
Charge and matter radii / Summary of results

- Charge radii for various nuclei using the chiral N3LO nucleon-nucleon potential.
- $\sim 1\text{MeV}/\text{A}$ missing for all nuclei: Size Extensivity!

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>E/A</th>
<th>V/A</th>
<th>Q</th>
<th>$\Delta E/A$</th>
<th>$<r^2>_{ch}^{1/2}$</th>
<th>$<r^2>_{ch}^{1/2}$ (Exp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^4He</td>
<td>-5.99</td>
<td>-22.75</td>
<td>0.90</td>
<td>1.08</td>
<td></td>
<td>1.673(1)</td>
</tr>
<tr>
<td>^{16}O</td>
<td>-6.72</td>
<td>-30.69</td>
<td>1.08</td>
<td>1.25</td>
<td>2.72(5)</td>
<td>2.737(8)</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>-7.72</td>
<td>-36.40</td>
<td>1.18</td>
<td>0.84</td>
<td>3.25(9)</td>
<td>3.4764</td>
</tr>
<tr>
<td>^{48}Ca</td>
<td>-7.40</td>
<td>-37.97</td>
<td>1.21</td>
<td>1.27</td>
<td>3.24(9)</td>
<td>3.4738</td>
</tr>
<tr>
<td>^{48}Ni</td>
<td>-6.02</td>
<td>-36.04</td>
<td>1.20</td>
<td>1.21</td>
<td>3.52(15)</td>
<td>?</td>
</tr>
</tbody>
</table>
Ab-initio approach weakly bound and unbound nuclear states
Open Quantum systems

- \(S_n = 0\)
- Correlation dominated
- Closed QS
- Ground States
- r-process
- \(Z = \text{const}\)

Neutron number
Coupled Cluster for open quantum systems

Open Quantum System. Coupling with continuum taken into account.

Closed Quantum System. No coupling with external continuum.
Complex energies requires a generalized completeness relation

\[|\Psi(r, t)|^2 = |\Phi(r)|^2 \exp\left(-\frac{\Gamma}{\hbar}t\right), \quad E = E_r - i\Gamma/2. \]

\[1 = \sum_{n=b,d} |\psi(l(k_n))\langle \tilde{\psi}_l(k_n) | + \int_{L^+} dk' k'^2 |\psi(l(k))\langle \tilde{\psi}_l(k)|. \]
How well does SR-CC describe open-shell nuclei?

Various Coupled Cluster approaches to the $^3-^6$He ground states. *Single reference Coupled-Cluster methods works!*

<table>
<thead>
<tr>
<th>Method</th>
<th>3He</th>
<th>4He</th>
<th>5He</th>
<th>6He</th>
<th>$\langle J^2 \rangle$, 6He</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD</td>
<td>-6.21</td>
<td>-26.19</td>
<td>-21.53</td>
<td>-20.96</td>
<td>0.61</td>
</tr>
<tr>
<td>CCSD(T)</td>
<td>-6.40</td>
<td>-26.27</td>
<td>-21.88</td>
<td>-22.60</td>
<td>0.65</td>
</tr>
<tr>
<td>CCSDT-1</td>
<td>-6.41</td>
<td>-28.27</td>
<td>-21.89</td>
<td>-22.85</td>
<td>0.29</td>
</tr>
<tr>
<td>CCSDT-2</td>
<td>-6.41</td>
<td>-28.26</td>
<td>-21.89</td>
<td>-22.78</td>
<td>0.25</td>
</tr>
<tr>
<td>CCSDT-3</td>
<td>-6.42</td>
<td>-26.27</td>
<td>-21.92</td>
<td>-22.90</td>
<td>0.26</td>
</tr>
<tr>
<td>CCSDT</td>
<td>-6.45</td>
<td>-26.28</td>
<td>-22.01</td>
<td>-22.52</td>
<td>0.04</td>
</tr>
<tr>
<td>FCI</td>
<td>-6.45</td>
<td>-26.3</td>
<td>-22.1</td>
<td>-22.7</td>
<td>0.00</td>
</tr>
</tbody>
</table>
CCSD results for Helium chain using $V_{\text{low}-k}$

- $V_{\text{low}-k}$ from N3LO with $\Lambda = 1.9\text{fm}^{-1}$.

- First *ab-initio* calculation of decay widths!
- CCM unique method for dripline nuclei.
- ~ 1000 active orbitals
- Underbinding hints at missing 3NF
4He and 8He density distributions with V-srg

- Single-particle density in 4He and 8He.
- Gamow-Hartree-Fock basis has correct asymptotics.
- N^3LO evolved down to \(\lambda = 2.0\text{fm}^{-1} \) from similarity renormalization group theory.

![Graphs showing density distributions](image-url)
Motivation
Coupled-Cluster approach to nuclear structure
Spherical CCSD
Open quantum systems
Conclusion and Perspectives

Partial wave decomposition of 8He density

- N^3LO evolved down to $\lambda = 2.0\text{fm}^{-1}$ from similarity renormalization group theory.
- Neutron skin in 8He is mainly built from s— and p—partial waves. Protons are mainly occupying s— partial waves.

![Graphs showing density distribution for neutrons and protons in 8He.](image)

INT 30.06.2008
Coupled-Cluster theory for Nuclei
Matter and charge radii of 8He using V-srg

- Λ dependence on 8He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.
Conclusion

- Coupled Cluster meets few-body benchmark calculations.
- J-coupled CCSD code has been derived and implemented.
 Coupled cluster approach to medium mass and driplines with bare interactions!
- Derived and implemented Equation of Motion CCM; calculation of density distributions and radii.
- CCM has been successfully applied to the description of weakly bound and unbound helium isotopes.
- We have a tool to attack the structure and properties of dripline and medium mass nuclei!
Future perspectives

- Location of dripline in the Oxygen chain?
- Revisit Helium chain with 3NF. Spin-orbit splitting in He7 and He9.
- Matter and charge radii of 11Li.
- Excited states and matter densities for dripline nuclei.
- Coupled Cluster approach to nuclear matter.
- Construction of effective interaction for shell-model calculations.
- Coupled-Cluster approach to nuclear reactions; CC-LIT and construction of optical potentials from folding procedures.
- We are developing a J-coupled CCSDT code.
- Ab-initio description of 56Ni, 100Sn and 208Pb within reach!
In Shell Model approach a linear excitation operator is used instead of an exponential. $\Psi = (1 + B_1 + B_2 + \ldots)\Phi_0$

- Any particle-hole truncation introduces unlinked diagrams, and it is therefore not size extensive.
- Dimension increases dramatically with number of active particles.

Comparison of CC with CI at given excitation level.

Nuclear Example (Kowalski et al PRL 2004).
Relationship between shell model and CC amplitudes

\[B_1 = T_1 \]
\[B_2 = T_2 + \frac{1}{2} T_1^2 \]
\[B_3 = T_3 + T_2 T_1 + \frac{1}{6} T_1^3 \]
\[B_4 = T_4 + T_3 T_1 + \frac{1}{2} T_2^2 + \frac{1}{2} T_2 T_1^2 + \frac{1}{24} T_1^4 \]

Connected quadruples
Disconnected quadruples

CCSD
CCSDT
Disconnected diagrams in truncated shell model/CI models (CISD, CISDT,...) leads to wrong scaling of energy with increasing number of particles.
Coupled Cluster meets benchmarks of 3H and 4He!

CCSD(T) and Faddeev (-Yakubovsky) results for 3H and 4He using $V_{\text{low}-k}$ from AV18 with $\Lambda = 1.9\text{fm}^{-1}$. **CCSD(T) are within the errors (50 keV) of the Faddeev results!** (G. Hagen et al., Phys. Rev. C 76, 044305 (2007))
16O and 40Ca CCSD(T) ground state energies

\[
\begin{array}{c|c|c|c}
 & ^4\text{He} & ^{16}\text{O} & ^{40}\text{Ca} \\
\hline
E_0 & -11.815 & -60.204 & -347.474 \\
\Delta E_{\text{CCSD}} & -17.107 & -82.576 & -143.736 \\
\Delta E_{\text{CCSD(T)}} & -0.253 & -5.450 & -11.699 \\
E_{\text{CCSD(T)}} & -29.175 & -148.232 & -502.908 \\
\text{exact (FY)} & -29.19(5) & & \\
\end{array}
\]

40Ca converged within 1% !

Roth and Navratil PRL 99, 092501 (2007) \(E_{\text{CISDT}} = -462.7\text{MeV}\). Our comment: arXiv:0709.0449
Different contributions to E_{CCSD} from 3NF in 4He

Three-body Hamiltonian in normal ordered form:
(G. Hagen et al., PRC (76) 034302 (2007))

\[
\hat{H}_3 = \frac{1}{6} \sum_{ijk} \langle ijk|ijk \rangle + \frac{1}{2} \sum_{ijpq} \langle ijp|ijq \rangle \{\hat{a}_p^{\dagger} \hat{a}_q\} + \frac{1}{4} \sum_{ipqrs} \langle ipq|irs \rangle \{\hat{a}_p^{\dagger} \hat{a}_q^{\dagger} \hat{a}_s \hat{a}_r\} + \hat{h}_3,
\]

Really good news!

- The “density dependent” terms of 3NF are dominant!
- ϵ from residual 3NF costs $1 - \epsilon$ of work!
- “2-body” machinery can be used.
- Residual 3NF can be neglected!
Convergence of 4He and 8He ground state energies with increasing number of partial waves in the basis.
Matter and charge radii of 4He using V-srg

- Λ dependence on 4He charge and matter radii indicates missing 3NF.
- Hamiltonians with two-body renormalized interactions (SRG/low-k) underestimates matter and charge radii.
\(\hbar \omega \) dependence on \(^4\text{He}\) and \(^8\text{He}\) charge and matter radii.
Coupled Cluster Theory

Exponential Ansatz for Ψ

$$|\Psi\rangle = e^{\hat{T}}|\Phi_0\rangle, \quad \hat{T} = \hat{T}_1 + \hat{T}_2 + \ldots + \hat{T}_A$$

$$\hat{T}_1 = \sum_{i,a} t_i^a \hat{a}_a^\dagger \hat{a}_i, \quad \hat{T}_2 = \frac{1}{2} \sum_{i<j,a<b} t_{ij}^{ab} \hat{a}_a^\dagger \hat{a}_b^\dagger \hat{a}_j \hat{a}_i.$$

Coupled Cluster Equations

$$\Delta E = \langle \Phi_0 | (H_N \exp(T))_C | \Phi_0 \rangle$$

$$0 = \langle \Phi_p | (H_N \exp(T))_C | \Phi_0 \rangle$$

$$\tilde{H} = (H_N \exp(T))_C$$

Iterative CCSDT-n approximations to full CCSDT

CCSDT − 1 0 = \langle \Phi_{ijk}^{abc} | (F_N T_3 + H_N T_2)_C | \Phi_0 \rangle

CCSDT − 2 0 = \langle \Phi_{ijk}^{abc} | \left(F_N T_3 + H_N T_2 + H_N T_2^2/2 \right)_C | \Phi_0 \rangle

CCSDT − 3 0 = \langle \Phi_{ijk}^{abc} | (F_N T_3 + H_N \exp(T_1 + T_2))_C | \Phi_0 \rangle

CCSDT 0 = \langle \Phi_{ijk}^{abc} | (H_N \exp(T_1 + T_2 + T_3))_C | \Phi_0 \rangle
Tripples correction to 16O and 40Ca binding energies

<table>
<thead>
<tr>
<th></th>
<th>4He</th>
<th>16O</th>
<th>40Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0</td>
<td>-11.815</td>
<td>-60.204</td>
<td>-347.474</td>
</tr>
<tr>
<td>ΔE_{CCSD}</td>
<td>-17.107</td>
<td>-82.576</td>
<td>-143.736</td>
</tr>
<tr>
<td>$\Delta E_{CCSD(T)}$</td>
<td>-0.253</td>
<td>-5.450</td>
<td>-11.699</td>
</tr>
<tr>
<td>$E_{CCSD(T)}$</td>
<td>-29.175</td>
<td>-148.232</td>
<td>-502.908</td>
</tr>
<tr>
<td>exact (FY)</td>
<td>-29.19(5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

40Ca converged within 1% !

We have derived and implemented Coupled Cluster equations for three-body Hamiltonians.

Probe cutoff dependence of $V_{\text{low-k}}$ with three nucleon force in light and medium heavy nuclei.

Does 3NF provide the necessary repulsion/attraction needed to approach experimental mass values?

“Coupled-cluster theory for three-body Hamiltonians” G. Hagen et al., PRC (76) 034302 (2007).
3NF contribution to the \hat{T}_1 cluster equation

Energy and 1p-1h equation as examples.
Factorization of diagrams very useful!
1p-1h: 15 diagrams
2p-2h: 51 diagrams
3NF from Chiral perturbation theory

Feynman diagrams

Phase shifts reproduced to χ^2/datum=1
About 24+ parameters

Motivation
Coupled-Cluster approach to nuclear structure
Spherical CCSD
Open quantum systems
Conclusion and Perspectives

Coupled Cluster Results for 4He with 3NF

- V_{low_k} from AV18 with $\Lambda = 1.9 \text{fm}^{-1}$.
- 3NF brings in repulsion as expected!
- CCSD and CCSD(T) with 3NF meets Faddeev-Yakubovsky benchmark!
 $E_{\text{CCSD(T)}} \approx -28.24 \text{ MeV}$. F-Y $E = -28.20(5)\text{MeV}$.

![Graph showing CCSD and CCSD(T) results for different N values.](image-url)
Different contributions to E_{CCSD} from 3NF in 4He

Three-body Hamiltonian in normal ordered form:

$$\hat{H}_3 = \frac{1}{6} \sum_{ijk} \langle ijk || ijk \rangle + \frac{1}{2} \sum_{ijpq} \langle ijp || ijq \rangle \{\hat{a}_p^\dagger \hat{a}_q\} + \frac{1}{4} \sum_{ipqrs} \langle ipq || irs \rangle \{\hat{a}_p^\dagger \hat{a}_q^\dagger \hat{a}_s \hat{a}_r\} + \hat{h}_3,$$

Really good news!

- The “density dependent” terms of 3NF are dominant!
- ϵ from residual 3NF costs $1 - \epsilon$ of work!
- “2-body” machinery can be used.
- Residual three-nucleon force can be neglected!
CCM vs. exact calculations for open-shell nuclei.

Various Coupled Cluster approaches to the $^3-^6$He ground states. Single reference Coupled-Cluster methods works!

<table>
<thead>
<tr>
<th>Method</th>
<th>3He</th>
<th>4He</th>
<th>5He</th>
<th>6He</th>
<th>$\langle J \rangle$, 6He</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD</td>
<td>-6.21</td>
<td>-26.19</td>
<td>-21.53</td>
<td>-20.96</td>
<td>0.61</td>
</tr>
<tr>
<td>CCSD(T)</td>
<td>-6.40</td>
<td>-26.27</td>
<td>-21.88</td>
<td>-22.60</td>
<td>0.65</td>
</tr>
<tr>
<td>CCSDT-1</td>
<td>-6.41</td>
<td>-28.27</td>
<td>-21.89</td>
<td>-22.85</td>
<td>0.29</td>
</tr>
<tr>
<td>CCSDT-2</td>
<td>-6.41</td>
<td>-28.26</td>
<td>-21.89</td>
<td>-22.78</td>
<td>0.25</td>
</tr>
<tr>
<td>CCSDT-3</td>
<td>-6.42</td>
<td>-26.27</td>
<td>-21.92</td>
<td>-22.90</td>
<td>0.26</td>
</tr>
<tr>
<td>CCSDT</td>
<td>-6.45</td>
<td>-26.28</td>
<td>-22.01</td>
<td>-22.52</td>
<td>0.04</td>
</tr>
<tr>
<td>Exact</td>
<td>-6.45</td>
<td>-26.3</td>
<td>-22.1</td>
<td>-22.7</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Convergence of CCSD results

Motivation
Coupled-Cluster approach to nuclear structure
Spherical CCSD
Open quantum systems
Conclusion and Perspectives

Convergence of CCSD results

Coupled-Cluster theory for Nuclei
Convergence of CCSD energy with $2n + l \leq 10$ truncation.

- 5He ground state energy starting with oscillator bases given for different $\hbar \omega$ values.
- Weak $\hbar \omega$ dependence, Results are well converged. $\Delta \text{Re}[E] \sim 0.1\text{MeV}$, $\Delta \text{Im}[E] \sim 0.01\text{MeV}$
CCSD convergence of 5He ground state energy for the $s - d$ space (300 orbitals) using $n = 20$ discretization points for L^+. The calculation were performed using two very different L^+ contours.

- L^+_{RT}: $\text{Re}[E] = -23.5468$ MeV
- $L^+_{Triangle}$: $\text{Re}[E] = -23.5581$ MeV

$\Delta \text{Re}[E] = 0.0113$ MeV

- L^+_{RT}: $\text{Im}[E] = -0.2134$ MeV
- $L^+_{Triangle}$: $\text{Im}[E] = -0.2158$ MeV

$\Delta \text{Im}[E] = 0.0025$ MeV
Coupled Cluster Results for Helium isotopes with TNF

CC results with $V_{\text{low}-k}$ from N3LO NN-interaction. Rather limited model-space $N = 3$. Only contact term at NN2LO is retained in the three nucleon force. TNF fitted to reproduce binding energy of ^4He.