Three-Nucleon Interactions in Light Nuclei and Possible Approximations for Coupled Cluster Theory

Sonia Bacca

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada.

TRIUMF

LABORATOIRE NATIONAL CANADIEN POUR LE RECHERCHE EN PHYSIQUE NUCLEAIRE ET EN PHYSIQUE DES PARTICULES

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada
Outline

• Nuclear Observables Sensitive to 3NF in Light Nuclei
 ★ Electroweak transitions to the continuum
 ★ The Lorentz Integral Transform Method → Talk by Nir Barnea last week
 ★ Photo-absorption, Neutrino and Electron Scattering

• Possible 3NF approximations for Coupled Cluster Theory

• Conclusions and Outlook

In collaboration with: Nir Barnea Hebrew University, Israel
Doron Gazit INT Seattle, USA
Gaute Hagen Oak Ridge National Laboratory USA
Winfried Leidemann
Giuseppina Orlandini Trento University, Italy
Achim Schwenk TRIUMF Canada
Three-Nucleon Forces in Light Nuclei

From meson exchange theory + phenomenological short range
2NF AV18
3NF UIX, IL2

Nuclear low energy spectra

Hadronic Reactions
n\(^{4}\)He \rightarrow n^{4}\)He

Pieper et al. (2002)

Nollett et al. (2007)
Three-Nucleon Forces in Light Nuclei

Nuclear low energy spectra

From chiral EFT \rightarrow 3NF arise naturally

2NF N^3LO

3NF N^2LO

Navratil et al. (2007)

Quaglioni et al. (2008)
Electroweak Reactions on Light Nuclei

As a theoretical laboratory to test 3NF effects!!

Why electroweak reactions?

- The coupling constant $\ll 1$
 \[\sigma \propto \left| \langle \Psi_f | J^\mu | \Psi_0 \rangle \right|^2 \]

 Excellent tool to investigate properties of nuclei

Why light nuclei?

- In few-body physics one can perform exact calculations both for bound and scattering states

 For $A \leq 4$ the explicit evaluation of the FSWF is possible within the F-Yakubovski, only up to a three-body disintegration channel

 For higher energy one needs a method capable to treat the "far continuum"

 The Lorentz Integral Transform
The Lorentz Integral Transform

\[R(\omega) = \sum_{f} \left| \langle \psi_f | \hat{O} | \psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega) \]

Efros, Leidemann, Orlandini, PLB 338 (1994) 130
The Lorentz Integral Transform

\[R(\omega) = \sum_{f} \left| \langle \psi_f | \hat{O} | \psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega) \]

\[L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} \]
The Lorentz Integral Transform

\[R(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega) \]

\[L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} \]

\[= \langle \psi_0 | \hat{O} \frac{1}{H - E_0 - \sigma - i\Gamma} \frac{1}{H - E_0 - \sigma + i\Gamma} | \psi_0 \rangle = \langle \tilde{\psi} | \tilde{\psi} \rangle \]

Efros, Leidemann, Orlandini, PLB 338 (1994) 130
The Lorentz Integral Transform

\[R(\omega) = \sum_f \left| \langle \psi_f | \hat{O} | \psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega) \]

\[L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} \]

\[= \left\langle \psi_0 | \hat{O} \frac{1}{H - E_0 - \sigma - i\Gamma} \frac{1}{H - E_0 - \sigma + i\Gamma} \hat{O} | \psi_0 \right\rangle = \left\langle \tilde{\psi} | \tilde{\psi} \right\rangle \]

\[(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle \]

- Due to imaginary part \(\Gamma \) the solution \(| \tilde{\psi} \rangle \) is unique
- If the r.h.s. is finite \(| \tilde{\psi} \rangle \) has bound state asymptotic behavior

Efros, Leidemann, Orlandini, PLB 338 (1994) 130
The Lorentz Integral Transform

\[R(\omega) = \sum_f \left| \langle \psi_f | \hat{O} | \psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega) \]

\[L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} \]

\[= \left\langle \psi_0 | \hat{O} \frac{1}{H - E_0 - \sigma - i\Gamma} \frac{1}{H - E_0 - \sigma + i\Gamma} \hat{O} | \psi_0 \right\rangle = \left\langle \tilde{\psi} | \tilde{\psi} \right\rangle \]

\[(H - E_0 - \sigma + i\Gamma) \left| \tilde{\psi} \right\rangle = \hat{O} \left| \psi_0 \right\rangle \]

- Due to imaginary part \(\Gamma \) the solution \(\left| \tilde{\psi} \right\rangle \) is unique
- If the r.h.s. is finite \(\left| \tilde{\psi} \right\rangle \) has bound state asymptotic behavior

You can use any good bound state method to solve the LIT equation
The Lorentz Integral Transform

\[R(\omega) = \sum_f f \left| \langle \psi_f | \hat{O} | \psi_0 \rangle \right|^2 \delta(E_f - E_0 - \omega) \]

\[L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} \]

\[= \left< \psi_0 | \hat{O} \frac{1}{H - E_0 - \sigma - i\Gamma} \frac{1}{H - E_0 - \sigma + i\Gamma} \hat{O} | \psi_0 \right> = \left< \tilde{\psi} | \tilde{\psi} \right> \]

\[(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle \]

- Due to imaginary part \(\Gamma \) the solution \(| \tilde{\psi} \rangle \) is unique
- If the r.h.s. is finite \(| \tilde{\psi} \rangle \) has bound state asymptotic behavior

CC-LIT equation

\[[\bar{H}, R(z)]|\phi_0 \rangle = (z - E_0)R(z)|\phi_0 \rangle + \bar{O}|\phi_0 \rangle \]

\[z = E_0 + \sigma + i\Gamma \]
How to solve the LIT equation

What we do:

\[(H - E_0 - \sigma + i\Gamma) |\tilde{\psi}\rangle = \hat{O} |\psi_0\rangle\]

- Bound-state method to expand \(|\psi_0\rangle, |\tilde{\psi}\rangle \) in terms of a complete set of basis state

Hyper-spherical Harmonics

\[\rho, \Omega = (\theta, \phi, \vartheta_1, \varphi_1, \vartheta_2, \varphi_2, \vartheta_3, \varphi_3)\]

\[\rho^2 = \sum_i r_i^2\]

\[\Psi = \sum_{[K], \nu}^{K_{\text{max}}, \nu_{\text{max}}} c_{\nu}^{[K]} e^{-\rho/2} \rho^{n/2} L_{\nu}^{n}(\rho) [\mathcal{Y}_\nu^{\mu}(\Omega)] \chi_{ST}^{\mu} a_{JT}\]

\[\Psi \sim e^{-\alpha \rho} \quad \rho \to \infty\]
How to solve the LIT equation

What we do:

\[(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle\]

- Bound-state method to expand \(| \psi_0 \rangle, | \tilde{\psi} \rangle\) in terms of a complete set of basis state

Hyper-spherical Harmonics

\[\rho, \Omega = (\theta, \phi, \vartheta_1, \varphi_1, \vartheta_2, \varphi_2, \vartheta_3, \varphi_3)\]

\[\rho^2 = \sum_i r_i^2\]

\[\Psi = \sum_{[K], \nu}^{K_{\text{max}}, \nu_{\text{max}}} c_{\nu[K]} e^{-\rho/2} \rho^{n/2} L_{\nu}^n(\rho) [\mathcal{Y}_{\nu[K]}(\Omega) \chi_{\text{ST}}^{J\Sigma}]^a_{JT}\]

\[\Psi \sim e^{-a\rho} \quad \rho \to \infty\]

- For fixed \(\Gamma\) and different \(\sigma\) solve the generalized eigenvalue problem to get the solution for \(\langle \tilde{\psi} | \tilde{\psi} \rangle\)
How to solve the LIT equation

What we do: \[(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle\]

- Bound-state method to expand \(|\psi_0 \rangle, |\tilde{\psi} \rangle\) in terms of a complete set of basis state

Hyper-spherical Harmonics

\[
\rho, \Omega = (\theta, \phi, \vartheta_1, \varphi_1, \vartheta_2, \varphi_2, \vartheta_3, \varphi_3)
\]
\[
\rho^2 = \sum_i r_i^2
\]

- For fixed \(\Gamma\) and different \(\sigma\) solve the generalized eigenvalue problem to get the solution for \(\langle \tilde{\psi} | \tilde{\psi} \rangle\)

- Numerical inversion of the transform \(L(\sigma) \leftrightarrow R(\omega)\)
 - Best fit method for \(c_n\)

\[
L(\sigma) = \sum_n c_n \tilde{\chi}_n^\alpha(\sigma) \quad \rightarrow \quad R(\omega) = \sum_n c_n \chi_n^\alpha(\omega)
\]
How to solve the LIT equation

What we do: \[(H - E_0 - \sigma + i\Gamma) \mid \tilde{\psi} \rangle = \hat{O} \mid \psi_0 \rangle\]

- Bound-state method to expand \(\mid \psi_0 \rangle, \mid \tilde{\psi} \rangle\) in terms of a complete set of basis state

\[\rho, \Omega = (\theta, \phi, \vartheta_1, \varphi_1, \theta_2, \varphi_2, \theta_3, \varphi_3)\]
\[\rho^2 = \sum_i r_i^2\]

Hyper-spherical Harmonics

\[\Psi = \sum_{[K, \nu]} c^{[K]}_{\nu} e^{-\rho/2} \rho^{n/2} L_{n}^{m}(\rho) [Y_{K}^{\mu}(\Omega) \chi_{ST}^{\alpha}]_{JT}\]
\[\Psi \sim e^{-\alpha \rho} \quad \rho \to \infty\]

- For fixed \(\Gamma\) and different \(\sigma\) solve the generalized eigenvalue problem to get the solution for \(\langle \tilde{\psi} \mid \tilde{\psi} \rangle\)

- Numerical inversion of the transform \(L(\sigma) \leftrightarrow R(\omega)\)
 - Best fit method for \(c_n\)
 \[L(\sigma) = \sum_n c_n \tilde{\chi}_n^{\alpha}(\sigma) \quad \quad R(\omega) = \sum_n c_n \chi_n^{\alpha}(\omega)\]

- Redo for different \(\Gamma\)
How to solve the LIT equation

What we do: \[(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle \]

- Bound-state method to expand \(|\psi_0\rangle, |\tilde{\psi}\rangle\) in terms of a complete set of basis state

Hyper-spherical Harmonics

\[\Psi = \sum_{[K,\nu]}^{K_{\text{max}},\nu_{\text{max}}} c_{\nu}^{[K]} e^{-\rho/2} \rho^{n/2} L_{\nu}^n(\rho) [\mathcal{Y}_r^{\mu}(\Omega)] \tilde{\chi}_{ST}^{\alpha} \]

\[\Psi \sim e^{-a\rho} \quad \rho \rightarrow \infty \]

- For fixed \(\Gamma\) and different \(\sigma\) solve the generalized eigenvalue problem to get the solution for \(\langle \tilde{\psi} | \tilde{\psi} \rangle\)

- Numerical inversion of the transform \(L(\sigma) \longleftrightarrow R(\omega)\)
 - Best fit method for \(c_n\)

\[L(\sigma) = \sum_n c_n \tilde{\chi}_n^{\alpha}(\sigma) \quad R(\omega) = \sum_n c_n \chi_n^{\alpha}(\omega) \]

- Redo for different \(\Gamma\) Obtain a response function independent on \(\Gamma\) which includes the full final state interaction
Photo-absorption reaction

Inclusive cross section $\gamma A \rightarrow X$ \hspace{1cm} $\sigma_\gamma(\omega) = 4\pi^2 \alpha \omega R^{E_1}(\omega)$

\[\begin{align*}
\sigma_\gamma(\omega) &= 4\pi^2 \alpha \omega R^{E_1}(\omega) \\
\text{AV18+UIX} &\quad \text{Gazit, S.B. et al. (2006)}
\end{align*} \]
Photo-absorption reaction

Inclusive cross section $\gamma A \rightarrow X$

$$\sigma_\gamma(\omega) = 4\pi^2\alpha\omega R^{E1}(\omega)$$

EFT NN+NNN

AV18+UIX Gazit, S.B. et al. (2006)
AV18 Quaglioni and Navratil (2007)
Photo-absorption reaction

Inclusive cross section \(\gamma A \rightarrow X \quad \sigma_\gamma(\omega) = 4\pi^2 \alpha \omega R^{E1}(\omega) \)

\[
\begin{align*}
\text{Tagged photons} & \\
\text{shaded area} & \\
\text{Bermann ('80) + Feldman ('90)} & \\
\text{box} & \text{Wells et al. ('92)} \\
\text{Nilsson et al. ('05)} & \\
\text{Shima et al. ('05)} & \\
\end{align*}
\]

\(4\text{He} \)

AV18+UIX Gazit, S.B. et al. (2006)
Chiral EFT Quaglioni and Navratil (2007)
Photo-absorption reaction

Inclusive cross section \(\gamma A \rightarrow X \)

\[
\sigma_\gamma(\omega) = 4\pi^2\alpha\omega R^{E1}(\omega)
\]

\(\omega \) [MeV]

\(\alpha_\gamma(\omega) \) [mb]

Soft-dipole Resonance

Giant Dipole Resonance

neutron halo \(\alpha \)-core

neutrons protons

AV4' potential

S.B. et al. (2004)

\(^6\text{He} \)
Photo-absorption reaction

Inclusive cross section \(\gamma A \rightarrow X \)
\[\sigma_\gamma(\omega) = 4\pi^2 \alpha \omega R^{E1}(\omega) \]

AV4' potential

\(\alpha(\omega) \) [mb]

\(\omega \) [MeV]

\(^6\text{He} \)

Soft-dipole Resonance

Giant Dipole Resonance

neutron halo \(\rightarrow \) \(\alpha \)-core

neutrons \(\rightarrow \) protons

S.B. et al. (2004)
Photo-absorption reaction

Inclusive cross section $\gamma A \rightarrow X$

$$\sigma_\gamma(\omega) = 4\pi^2 \alpha \omega R^{E_1}(\omega)$$

Diagram showing the AV4' potential with peaks labeled as Soft-dipole Resonance and Giant Dipole Resonance.

The graph shows the cross section $\sigma_\gamma(\omega)$ as a function of energy ω for the 6He nucleus. The peaks correspond to neutron halo, α-core, and neutrons and protons configurations.

S.B. et al. (2004)
Photo-absorption reaction

Inclusive cross section $\gamma A \rightarrow X$

$\sigma_\gamma(\omega) = 4\pi^2\alpha\omega R^{E1}(\omega)$

ω [MeV]

$\alpha_\gamma(\omega)$ [mb]

6He

Soft-dipole Resonance

Giant Dipole Resonance

What happens if one uses realistic 2NF and 3NF?
Neutrino scattering reaction

\[^4He(\nu, \nu')X \] important in a SN environment

A microscopic calculation of the cross section, based on modern Hamiltonian is possible with the LIT!
Neutrino scattering reaction

$^4\text{He}(\nu, \nu')X$ important in a SN environment

A microscopic calculation of the cross section, based on modern Hamiltonian is possible with the LIT!

Sensitivity to the nuclear Hamiltonian

\[
\frac{1}{q^2} R_{E2}(\omega)
\]

Gazit, Barnea (2007)
Neutrino scattering reaction

$^4\text{He}(\nu, \nu')X$ important in a SN environment

A microscopic calculation of the cross section, based on modern Hamiltonian is possible with the LIT!

![Diagram](image)

Temperature averaged $\langle \sigma \rangle_T$ neutral cross section

<table>
<thead>
<tr>
<th>T [MeV]</th>
<th>AV18</th>
<th>AV18 + UIX</th>
<th>AV18 + UIX + MEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.31×10^{-3}</td>
<td>1.63×10^{-3}</td>
<td>1.66×10^{-3}</td>
</tr>
<tr>
<td>6</td>
<td>4.30×10^{-2}</td>
<td>3.17×10^{-2}</td>
<td>3.20×10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>2.52×10^{-1}</td>
<td>1.91×10^{-1}</td>
<td>1.92×10^{-1}</td>
</tr>
<tr>
<td>10</td>
<td>8.81×10^{-1}</td>
<td>6.77×10^{-1}</td>
<td>6.82×10^{-1}</td>
</tr>
<tr>
<td>12</td>
<td>2.29</td>
<td>1.79</td>
<td>1.80</td>
</tr>
<tr>
<td>14</td>
<td>4.53</td>
<td>3.91</td>
<td>3.93</td>
</tr>
</tbody>
</table>

Sensitivity to the nuclear Hamiltonian

$\frac{1}{q^2} R_{E2}(\omega)$

Gazit, Barnea (2007)
Neutrino scattering reaction

$^4\text{He}(\nu, \nu')X$ important in a SN environment

A microscopic calculation of the cross section, based on modern Hamiltonian is possible with the LIT!

![Diagram of neutrino scattering](image)

Effect of 3NF shows up in neutrino scattering!

Temperature averaged $\langle \sigma \rangle_T$ neutral cross section

<table>
<thead>
<tr>
<th>T [MeV]</th>
<th>AV18</th>
<th>AV18 + UIX</th>
<th>AV18 + UIX + MEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2.31×10^{-3}</td>
<td>1.63×10^{-3}</td>
<td>1.66×10^{-3}</td>
</tr>
<tr>
<td>6</td>
<td>4.30×10^{-2}</td>
<td>3.17×10^{-2}</td>
<td>3.20×10^{-2}</td>
</tr>
<tr>
<td>8</td>
<td>2.52×10^{-1}</td>
<td>1.91×10^{-1}</td>
<td>1.92×10^{-1}</td>
</tr>
<tr>
<td>10</td>
<td>8.81×10^{-1}</td>
<td>6.77×10^{-1}</td>
<td>6.82×10^{-1}</td>
</tr>
<tr>
<td>12</td>
<td>2.29</td>
<td>1.79</td>
<td>1.80</td>
</tr>
<tr>
<td>14</td>
<td>4.53</td>
<td>3.91</td>
<td>3.93</td>
</tr>
</tbody>
</table>

Sensitivity to the nuclear Hamiltonian

$\frac{1}{q^2} R_{E2}(\omega)$

Gazit, Barnea (2007)
Electron scattering reaction

Virtual Photon

\[(\omega, \mathbf{q})\]

can vary independently

Inclusive cross section \(A(e,e')X\)

\[
\frac{d^2 \sigma}{d\Omega d\omega} = \sigma_M \left[\frac{Q^4}{q^4} R_L(\omega, \mathbf{q}) + \left(\frac{Q^2}{2q^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, \mathbf{q}) \right]
\]

with \(Q^2 = -q^2 = q^2 - \omega^2\) and \(\theta\) scattering angle

and \(\sigma_M\) Mott cross section
Electron scattering reaction

![Diagram of electron scattering reaction](image)

Virtual Photon

$$(\omega, \mathbf{q})$$

can vary independently

Inclusive cross section \(A(e,e')X\)

$$\frac{d^2 \sigma}{d\Omega d\omega} = \sigma_M \left[\frac{Q^4}{q^4} R_L(\omega, \mathbf{q}) + \left(\frac{Q^2}{2q^2} + \tan^2 \frac{\theta}{2} \right) R_T(\omega, \mathbf{q}) \right]$$

with \(Q^2 = -q^2 = q^2 - \omega^2\) and \(\theta\) scattering angle

and \(\sigma_M\) Mott cross section
Comparison with experiment

Calculation of $R_L(\omega, q)$ with the LIT/EIHH method

Medium-q kinematics

- The comparison with experiment improves with addition of 3NF
- 3NF mainly in quasi-elastic peak region
Calculation of $R_L(\omega, q)$ with the LIT/EIHH method

Low-q kinematics

- This observable is very sensitive to 3NF
- Quest for new precise measurements! Proposal in MAMI@Mainz
Nuclear Structure

We want to investigate nuclei with $A>4$ with HH

1. Use smooth cutoff low-momentum interactions V_{lowk}
 NN evolved from chiral N3LO

2. Find out some approximation to include 3NF effects in an easier way to reduce the computational cost

$\text{3}\rightarrow\text{2N}$ relative coordinate and coupled scheme
Nuclear Structure

We want to investigate nuclei with $A>4$ with HH

1. Use smooth cutoff low-momentum interactions $V_{\text{low}k}$
 NN evolved from chiral N3LO

2. Find out some approximation to include 3NF effects in an easier way to reduce the computational cost
 $3\rightarrow2N$ relative coordinate and coupled scheme

Could be used in spherical CC!
Nuclear Structure

We want to investigate nuclei with $A>4$ with HH

1. Use smooth cutoff low-momentum interactions V_{lowk}
 NN evolved from chiral N3LO

2. Find out some approximation to include 3NF effects in an easier way to reduce the computational cost

3\rightarrow2N relative coordinate and coupled scheme

Could be used in spherical CC!

Idea triggered by CC results of normal ordered Hamiltonian in m-scheme

Hagen et al. (2007)
Nuclear Structure

1. Use V_{lowk} evolved from chiral N3LO

$$\hat{V} = \sum_{n, n'}^{n_{\text{max}}, \ell_{\text{max}}} |n(\ell s)j\rangle v^{j, h\Omega}_{n n' \ell \ell'} \langle n'(\ell' s')j| \text{ with } v^{j, h\Omega}_{n n' \ell \ell'} = \langle n(\ell s)j|\hat{V}|n'(\ell' s')j\rangle$$
Nuclear Structure

1. Use V_{lowk} evolved from chiral N3LO

$$\hat{V} = \sum_{nn', \ell\ell'} |n(\ell s)j\rangle v_{nn'\ell\ell'}^{j,\hbar\Omega} \langle n'(\ell's')j|$$

with $v_{nn'\ell\ell'}^{j,\hbar\Omega} = \langle n(\ell s)j|\hat{V}|n'(\ell's')j\rangle$

- Expansion of Hilbert space size $\rightarrow K_{\text{max}}$
- Expansion of the potential $\rightarrow n_{\text{max}}, \ell_{\text{max}} \rightarrow \hbar\Omega$
Nuclear Structure

1. Use $V_{\text{low } k}$ evolved from chiral N3LO

\[\hat{V} = \sum_{n_{\text{max}}, \ell_{\text{max}}} |n(\ell s)j\rangle v^{i,h\Omega}_{n n' \ell \ell'} \langle n'(\ell' s')j| \text{ with } v^{i,h\Omega}_{n n' \ell \ell'} = \langle n(\ell s)j|\hat{V}|n'(\ell' s')j\rangle \]

- Expansion of Hilbert space size $\rightarrow K_{\text{max}}$
- Expansion of the potential $\rightarrow n_{\text{max}}, \ell_{\text{max}} \rightarrow h\Omega$

\[E_0 \text{[MeV]} \]

\begin{tabular}{l|ccc}
\hline
 & F-FY* & HH & CC† \\
\hline
3H & -8.40(1) & -8.41(2) & - \\
\hline
\end{tabular}

* from A. Nogga
† form G. Hagen

Perfect agreement!
Nuclear Structure

1. Use \(V_{\text{low}k} \) evolved from chiral N3LO

\[
\hat{V} = \sum_{n_{\text{max}}, \ell_{\text{max}}} |n(\ell s)j\rangle v_{n_{\text{max}}, \ell_{\text{max}}}^{j, h\Omega} \langle n'(\ell' s')j| \quad \text{with} \quad v_{n_{\text{max}}, \ell_{\text{max}}}^{j, h\Omega} = \langle n(\ell s)j| \hat{V} |n'(\ell' s')j\rangle
\]

- Expansion of Hilbert space size \(\rightarrow K_{\text{max}} \)
- Expansion of the potential \(\rightarrow n_{\text{max}}, \ell_{\text{max}} \rightarrow \hbar\Omega \)

Perfect convergence: no \(\hbar\Omega \) dependence!
Nuclear Structure

2. Find out some approximation to include 3NF effects in an easier way $3 \rightarrow 2N$
Nuclear Structure

2. Find out some approximation to include 3NF effects in an easier way \(3 \rightarrow 2N \)
2. Find out some approximation to include 3NF effects in an easier way \(3\rightarrow2N\)

\[
|\alpha\rangle = n_{\eta_1} n_{\eta_2} \left((\ell_{\eta_1} s) j_{\eta_1} \left(\ell_{\eta_2} \frac{1}{2} \right) j_{\eta_2} \right) JM \leftrightarrow |(12)_{\eta_1 q_{\eta_2}}\rangle = n_{\eta_1} (\ell_{\eta_1} s) j_{\eta_1} m_{\eta_1} \bigg| n_{\eta_2} \left(\ell_{\eta_2} \frac{1}{2} \right) j_{\eta_2} m_{\eta_2} \bigg\rangle
\]
Nuclear Structure

2. Find out some approximation to include 3NF effects in an easier way $3 \rightarrow 2N$

$$|\alpha\rangle = n_{\eta_1} n_{\eta_2} \left((\ell_{\eta_1} s_{\eta_1} \frac{1}{2}) j_{\eta_1} (\ell_{\eta_2} \frac{1}{2}) j_{\eta_2} \right) JM \leftrightarrow |(12)_{\eta_1 q_{\eta_2}}\rangle = n_{\eta_1} (\ell_{\eta_1} s_{\eta_1} j_{\eta_1} m_{\eta_1}) n_{\eta_2} (\ell_{\eta_2} \frac{1}{2}) j_{\eta_2} m_{\eta_2}$$

$$\langle \alpha | V^{3N} | \beta \rangle \leftrightarrow \langle (12)_{\eta_1 q_{\eta_2}} | V^{3N} | (12)'_{\eta_1 q'_{\eta_2}} \rangle$$
2. Find out some approximation to include 3NF effects in an easier way \(3 \rightarrow 2N\)

\[
|\alpha\rangle = \left| n_{\eta_1} n_{\eta_2} \left((\ell_{\eta_1} s) j_{\eta_1} \left(\ell_{\eta_2} \frac{1}{2} \right) j_{\eta_2} \right) J M \right\rangle \quad \rightarrow \quad |(12)_{\eta_1} q_{\eta_2}\rangle = \left| n_{\eta_1} (\ell_{\eta_1} s) j_{\eta_1} m_{\eta_1}\right\rangle \left| n_{\eta_2} \left(\ell_{\eta_2} \frac{1}{2} \right) j_{\eta_2} m_{\eta_2}\right\rangle
\]

\[
\langle \alpha | V^{3N} | \beta \rangle \quad \rightarrow \quad \langle (12)_{\eta_1} q_{\eta_2} | V^{3N} | (12)'_{\eta_1} q'_{\eta_2} \rangle
\]

\[
\sum_{q_{\eta_2}} \langle (12)_{\eta_1} q_{\eta_2} | V^{3N} | (12)'_{\eta_1} q_{\eta_2} \rangle \propto \langle (12)_{\eta_1} | V^{3-2N} | (12)'_{\eta_1} \rangle
\]

\[
\langle n_{\eta_1} (\ell_{\eta_1} s) j_{\eta_1} | V^{3-2N} | n'_{\eta_1} (\ell'_{\eta_1} s) j_{\eta_1} \rangle \quad \text{effective two-body force}
\]
2. Find out some approximation to include 3NF effects in an easier way \(3 \rightarrow 2N\)

\[
|\alpha\rangle = n_{\eta_1} n_{\eta_2} \left((\ell_{\eta_1} s) j_{\eta_1} \left(\ell_{\eta_2} \frac{1}{2} \right) j_{\eta_2} \right) JM \longleftrightarrow |(12)_{\eta_1} q_{\eta_2}\rangle = n_{\eta_1} (\ell_{\eta_1} s) j_{\eta_1} m_{\eta_1}\rangle \left| n_{\eta_2} \left(\ell_{\eta_2} \frac{1}{2} \right) j_{\eta_2} m_{\eta_2}\right\rangle
\]

\[
\langle \alpha | V^{3N} | \beta \rangle \longleftrightarrow \langle (12)_{\eta_1} q_{\eta_2} | V^{3N} | (12)_{\eta_1} q_{\eta_2}\rangle
\]

\[
\sum_{q_{\eta_2}} \langle (12)_{\eta_1} q_{\eta_2} | V^{3N} | (12)'_{\eta_1} q_{\eta_2}\rangle \propto \langle (12)_{\eta_1} | V^{3->N} | (12)_{\eta_1}' \rangle
\]

\[
\langle n_{\eta_1} (\ell_{\eta_1} s) j_{\eta_1} V^{3->2N} | n'_{\eta_1} (\ell'_{\eta_1} s) j_{\eta_1} \rangle \text{ effective two-body force}
\]

\[
\sum_{q_{\eta_2}} \langle (12)_{\eta_1} q_{\eta_2} | V^{3N} | (12)'_{\eta_1} q_{\eta_2}\rangle
\]

\[
\sum_{q_{\eta_2}} \langle (12)_{\eta_1} | V^{3->N} | (12)_{\eta_1}' \rangle
\]

\[
\langle n_{\eta_1} (\ell_{\eta_1} s) j_{\eta_1} V^{3->2N} | n'_{\eta_1} (\ell'_{\eta_1} s) j_{\eta_1} \rangle
\]

\[
\sum_{q_{\eta_2}} \langle (12)_{\eta_1} q_{\eta_2} | V^{3N} | (12)'_{\eta_1} q_{\eta_2}\rangle
\]

\[
\sum_{q_{\eta_2}} \langle (12)_{\eta_1} | V^{3->N} | (12)_{\eta_1}' \rangle
\]

\[
\langle n_{\eta_1} (\ell_{\eta_1} s) j_{\eta_1} V^{3->2N} | n'_{\eta_1} (\ell'_{\eta_1} s) j_{\eta_1} \rangle
\]

\[
\sum_{q_{\eta_2}} \langle (12)_{\eta_1} q_{\eta_2} | V^{3N} | (12)'_{\eta_1} q_{\eta_2}\rangle
\]

\[
\sum_{q_{\eta_2}} \langle (12)_{\eta_1} | V^{3->N} | (12)_{\eta_1}' \rangle
\]

\[
\langle n_{\eta_1} (\ell_{\eta_1} s) j_{\eta_1} V^{3->2N} | n'_{\eta_1} (\ell'_{\eta_1} s) j_{\eta_1} \rangle
\]
Nuclear Structure

Test the $3\to2N$ on $A=4$

→ NN: V_{lowk} evolved from 2N chiral N3LO

3N: chiral 3N N2LO with c_D, c_E fitted to $A=3,4$

→ $3\to2NF$:

\[V_{\text{lowk}} + 3\to2N \ J=1/2^+ \ T=1/2 \]

\[h\Omega = 14 \text{ MeV} \]

\[\begin{array}{|c|c|c|c|}
 \hline
 \text{[MeV]} & \text{F-FY*} & \text{HH} & \text{CC†} \\
 \hline
 \hline
 \end{array} \]

* from A. Nogga
† from G. Hagen

Good, but not perfect agreement!
Nuclear Structure

Test the $3\rightarrow2N$ on $A=4$

→ NN: V_{lowk} evolved from 2N chiral N3LO

3N: chiral 3N N2LO with c_D c_E fitted to $A=3,4$

→ $3\rightarrow2NF$:

\[\begin{align*}
V_{\text{low k}} & \quad \Lambda=2.0 \text{ fm}^{-1} \\
& + \\
3\rightarrow2N J=1/2^+ T=1/2
\end{align*}\]

\[\begin{align*}
\hbar\Omega \text{ dependence!}
\end{align*}\]
Nuclear Structure

Test the $3\rightarrow2N$ on $A=4$

\rightarrow NN: $V_{\text{low k}}$ evolved from 2N chiral N3LO

3N: chiral 3N N2LO with c_D c_E fitted to $A=3,4$

\rightarrow 3\rightarrow2NF:

$V_{\text{low k}}$ $\Lambda=2.0$ fm$^{-1}$

$3\rightarrow2N$ $J=1/2^+$ $T=1/2$

$h\Omega$ dependence!

- $3\rightarrow2N$ is too repulsive for large $h\Omega$
 when the HO density is larger

\begin{itemize}
 \item $h\Omega$ dependence!
 \item $3\rightarrow2N$ is too repulsive for large $h\Omega$
 when the HO density is larger
\end{itemize}
Nuclear Structure

Test the $3\rightarrow2N$ on $A=4$

- **NN:** $V_{\text{low } k}$ evolved from 2N chiral N3LO
- **3N:** chiral 3N N2LO with c_D, c_E fitted to $A=3,4$

- **3\rightarrow2NF:**

\[V_{\text{low } k} \Lambda=2.0 \text{ fm}^{-1} \]
\[3\rightarrow2N J=1/2^+ T=1/2 \]

$\hbar\Omega$ dependence!

- $3\rightarrow2N$ is too repulsive for large $\hbar\Omega$ when the HO density is larger
- For small $\hbar\Omega$, $3\rightarrow2N$ coincides with 2N only

4He
Test the $3\to2N$ on $A=4$

\rightarrow NN: V_{lowk} evolved from 2N chiral N3LO

$3N$: chiral 3N N2LO with c_D c_E fitted to $A=3,4$

\rightarrow $3\to2\text{NF}$:

Understand the dependence from 3NF scaling

With a simple gaussian 3NF force $\langle V^{3N} \rangle \sim (\hbar \Omega)^3$
Test the 3→2N on \(A=4 \)

- **NN:** \(V_{\text{lowk}} \) evolved from 2N chiral N3LO
- **3N:** chiral 3N N2LO with \(c_D, c_E \) fitted to \(A=3,4 \)
- **3→2NF:**

Understand the dependence from 3NF scaling

With a simple gaussian 3NF force \(\langle V^{3N} \rangle \sim (\hbar \Omega)^3 \)

Need to improve on the \(\hbar \Omega \)-dependence to get a flattening over a physically motivated range of \(\hbar \Omega \)
Nuclear Structure

Test the 3→2N on A=4

→ NN: \(V_{\text{lowk}} \) evolved from 2N chiral N3LO

3N: chiral 3N N2LO with \(c_d \) \(c_E \) fitted to A=3,4

→ 3→2NF:

Understand the dependence from 3NF scaling
With a simple gaussian 3NF force \(\langle V^{3N} \rangle \sim (\hbar \Omega)^3 \)

\[
\begin{align*}
\text{linear fit: } y &= ax^3 + bx^2 - E_0(2NF) \\
\text{non linear fit: } y &= ax^b + c \\
& \quad \text{b~3.2}
\end{align*}
\]

Need to improve on the \(\hbar \Omega \)-dependence to get a flattening over a physically motivated range of \(\hbar \Omega \)
Structure of halo nuclei

Lightest halo system: ^{6}He

Investigate it with realistic forces + 3NF with a w.f. with “good” fall off at large r

$e^{-\alpha \rho} \quad \rho \rightarrow \infty$

Hyper-spherical Harmonics

$^{6}\text{He}\quad$ PRELIMINARY

$V_{\text{low } k}$

$V_{\text{low } k} + 3 \rightarrow 2\text{N}$

$J=1/2^+ \quad T=1/2$

$^{4}\text{He-core} \quad \hbar \Omega = 14 \text{ MeV}$

EXP

$E_0 \text{ [MeV]}$

K_{max}

$0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14$
Structure of halo nuclei

Lightest halo system: 6He

Investigate it with realistic forces + 3NF with a w.f. with "good" fall off at large r

$e^{-\alpha \rho}$ \quad \rho \rightarrow \infty \quad \text{Hyper-spherical Harmonics}$

6He

$V_{\text{low } k}$ 3->2N

$J=1/2^+ \quad T=1/2$

4He-core $\hbar \Omega = 14 \text{ MeV}$

Still unsatisfactory convergence

Add other 3NF partial waves

Investigate $\hbar \Omega$ dependence
Conclusion and Outlook

- Three-body forces are fundamental to describe nuclear physics.

- The LIT is a very powerful method to an exact study of perturbation induced reactions of few-body systems, and can possibly be extended to heavier systems if used in conjunction with the CC theory.

- Need a systematic improvement of the 3→2N approximation for CC theory of medium-mass nuclei.

Future: CC + LIT + 3→2NF

- Extend the ab initio treatment of inelastic reactions to heavier systems.
- Shed more light on role of 3NF.
- Have new intersection theory-experiment.