Tuning the heavy-light guitar: Notes on holographic $\mathcal{N} = 2$ mesons

Aleksi Vuorinen

CERN

INT, April 10, 2008

Outline

Heavy quarks in QCD
 Preliminaries
 Heavy quark limit of QCD

Meson spectroscopy in strongly coupled $\mathcal{N} = 2$ SYM
 Basics of AdS/CFT
 Meson spectra: Preliminaries
 Heavy-light puzzle

Holographic heavy-light mesons
 Fluctuations: Preliminaries
 Fluctuation spectra
 Rotating strings: Preliminaries
 Rotating strings: Results

Conclusions
Outline

Heavy quarks in QCD
- Preliminaries
- Heavy quark limit of QCD

Meson spectroscopy in strongly coupled $\mathcal{N} = 2$ SYM
- Basics of AdS/CFT
- Meson spectra: Preliminaries
- Heavy-light puzzle

Holographic heavy-light mesons
- Fluctuations: Preliminaries
- Fluctuation spectra
- Rotating strings: Preliminaries
- Rotating strings: Results

Conclusions
Hadron spectrum of QCD

- Fundamental challenge in QCD: Understand and predict mass spectrum of bound states (hadrons and glueballs)
 - Lattice QCD provides accurate numerical results — excellent agreement with experiments
 - Analytic results difficult to obtain due to non-perturbative nature of problem (1M$ for derivation of mass gap)
Heavy quarks in QCD

- Simplifications for heavy quark systems ($m_h \gg \Lambda_{QCD}$)
 - Asymptotic freedom \Rightarrow Heavy quark physics perturbative
 - Separate conservation of heavy and light quark angular momenta \Rightarrow Interactions of heavy and light dof’s independent of heavy quark spin and flavor
Heavy quarks in QCD

- Simplifications for heavy quark systems \((m_h \gg \Lambda_{QCD})\)
 - Asymptotic freedom \(\Rightarrow\) Heavy quark physics perturbative
 - Separate conservation of heavy and light quark angular momenta \(\Rightarrow\) Interactions of heavy and light dof’s independent of heavy quark spin and flavor

- Heavy-heavy meson: Non-relativistic, perturbative positronium-like system
 - Balancing between potential and kinetic energies of two point-like particles
 - Some sensitivity to details of confinement: Interpolating "Cornell" potential
Heavy quarks in QCD

- Simplifications for heavy quark systems ($m_h \gg \Lambda_{QCD}$)
 - Asymptotic freedom \Rightarrow Heavy quark physics perturbative
 - Separate conservation of heavy and light quark angular momenta \Rightarrow Interactions of heavy and light dof’s independent of heavy quark spin and flavor

- Heavy-light meson: Small object of size $1/m_h$ surrounded by brown muck of size $1/\Lambda_{QCD}$
 - Heavy quark almost at rest; motion suppressed by Λ_{QCD}/m_h
 - Surrounded by light (virtual) quarks and gluons, blind to heavy quark spin and flavor
Heavy quarks in QCD

- Simplifications for heavy quark systems ($m_h \gg \Lambda_{QCD}$)
 - Asymptotic freedom \Rightarrow Heavy quark physics perturbative
 - Separate conservation of heavy and light quark angular momenta \Rightarrow Interactions of heavy and light dof’s independent of heavy quark spin and flavor

- Formal approach Heavy Quark Effective Theory (HQET)
 - Effective theory based on $1/m_h$ expansion
 - Predictions: m_h dependence of hadron spectrum and weak decay amplitudes, e.g.
 \[
 m_{HL} = m_Q + \bar{\Lambda} + \frac{\Delta m^2}{2m_Q}
 \]
 - Fine splitting from light quark quantum numbers, hyperfine from heavy quark spin
 - Experimentally $m_{B_s} - m_B \approx m_{D_s} - m_D \approx 100$ MeV
Heavy quarks in QCD

- Simplifications for heavy quark systems ($m_h \gg \Lambda_{QCD}$)
 - Asymptotic freedom \Rightarrow Heavy quark physics perturbative
 - Separate conservation of heavy and light quark angular momenta \Rightarrow Interactions of heavy and light dof’s independent of heavy quark spin and flavor

- Physical motivation for heavy quark physics:
 - Flavor changing weak decays: CKM matrix elements
 - Heavy quark masses and meson decay constants
Setting up goals

- Ultimate dream: First principles analytic calculation of masses and lifetimes of different hadrons in QCD
 - Implies solving confinement
- More realistic goal: Increase qualitative understanding of confinement and other non-perturbative physics
- Novel approach: Use AdS/QCD and answer questions through dual gravitational model
- One step back: Address the problem in a theory with known gravity dual, $\mathcal{N}=4$ SYM with N_f massive $\mathcal{N}=2$ hypermultiplets
 - Direct access to strongly coupled non-Abelian gauge theory
 - Important difference: $\mathcal{N}=2$ essentially conformal, Λ_{QCD} replaced by lightest m_q
Setting up goals

- Ultimate dream: First principles analytic calculation of masses and lifetimes of different hadrons in QCD
 - Implies solving confinement

- More realistic goal: Increase qualitative understanding of confinement and other non-perturbative physics

- Novel approach: Use AdS/QCD and answer questions through dual gravitational model

- One step back: Address the problem in a theory with known gravity dual, $\mathcal{N} = 4$ SYM with N_f massive $\mathcal{N} = 2$ hypermultiplets
 - Direct access to strongly coupled non-Abelian gauge theory
 - Important difference: $\mathcal{N} = 2$ essentially conformal, Λ_{QCD} replaced by lightest m_q
Setting up goals

- Ultimate dream: First principles analytic calculation of masses and lifetimes of different hadrons in QCD
 - Implies solving confinement
- More realistic goal: Increase qualitative understanding of confinement and other non-perturbative physics
- Novel approach: Use AdS/QCD and answer questions through dual gravitational model
- One step back: Address the problem in a theory with known gravity dual, $\mathcal{N} = 4$ SYM with N_f massive $\mathcal{N} = 2$ hypermultiplets
 - Direct access to strongly coupled non-Abelian gauge theory
 - Important difference: $\mathcal{N} = 2$ essentially conformal, Λ_{QCD} replaced by lightest m_q
Setting up goals

- Ultimate dream: First principles analytic calculation of masses and lifetimes of different hadrons in QCD
 - Implies solving confinement
- More realistic goal: Increase qualitative understanding of confinement and other non-perturbative physics
- Novel approach: Use AdS/QCD and answer questions through dual gravitational model
- One step back: Address the problem in a theory with known gravity dual, $\mathcal{N} = 4$ SYM with N_f massive $\mathcal{N} = 2$ hypermultiplets
 - Direct access to strongly coupled non-Abelian gauge theory
 - Important difference: $\mathcal{N} = 2$ essentially conformal, Λ_{QCD} replaced by lightest m_q
Outline

Heavy quarks in QCD
 Preliminaries
 Heavy quark limit of QCD

Meson spectroscopy in strongly coupled $\mathcal{N} = 2$ SYM
 Basics of AdS/CFT
 Meson spectra: Preliminaries
 Heavy-light puzzle

Holographic heavy-light mesons
 Fluctuations: Preliminaries
 Fluctuation spectra
 Rotating strings: Preliminaries
 Rotating strings: Results

Conclusions
$\mathcal{N} = 4$ SYM and gauge/gravity duality

- Special feature of 4d $\mathcal{N} = 4$ SYM: Known string dual
 - $\mathcal{N} = 4$ SYM \Leftrightarrow IIB string theory on $AdS_5 \times S_5$

 \[ds^2 = L^2 \left[u^2 \eta_{\mu\nu} dx^\mu dx^\nu + \frac{\delta_{ij} dy^i dy^j}{u^2} \right] \]

 - L = (curvature) radius of S_5 and AdS_5, $u^2 \equiv \sum_{i=1}^{6} (y^i)^2$
 - Parameters string coupling g_s and length scale $\ell_s = \sqrt{\alpha'}$

- AdS/CFT dictionary:
 - Radial coordinate in AdS \sim energy scale in CFT
 - $(L/\ell_s)^4 = \lambda$, $g_s = \lambda/(4\pi N_c)$

- Beautiful aspect:
 - Classical sugra limit: string coupling $g_s \ll 1$ and $L/\ell_s \gg 1$
 - Gauge theory at $\lambda \gg 1$, $N_c \to \infty \Leftrightarrow$ Classical GR!
\[\mathcal{N} = 4 \text{ SYM and gauge/gravity duality} \]

- Special feature of 4d \(\mathcal{N} = 4 \) SYM: Known string dual
 - \(\mathcal{N} = 4 \) SYM \(\Leftrightarrow \) IIB string theory on \(AdS_5 \times S_5 \)
 - \[
 ds^2 = L^2 \left[u^2 \eta_{\mu\nu} dx^\mu dx^\nu + \frac{\delta_{ij} dy^i dy^j}{u^2} \right]
 \]
 - \(L = \) (curvature) radius of \(S_5 \) and \(AdS_5 \), \(u^2 \equiv \sum_{i=1}^{6} (y^i)^2 \)
 - Parameters string coupling \(g_s \) and length scale \(\ell_s = \sqrt{\alpha'} \)

- AdS/CFT dictionary:
 - Radial coordinate in AdS \(\sim \) energy scale in CFT
 - \((L/\ell_s)^4 = \lambda, \; g_s = \lambda/(4\pi N_c) \)

- Beautiful aspect:
 - Classical sugra limit: string coupling \(g_s \ll 1 \) and \(L/\ell_s \gg 1 \)
 - Gauge theory at \(\lambda \gg 1, \; N_c \rightarrow \infty \Leftrightarrow \) Classical GR!
\[\mathcal{N} = 4 \text{ SYM and gauge/gravity duality} \]

- Special feature of 4d \(\mathcal{N} = 4 \) SYM: Known string dual
 - \(\mathcal{N} = 4 \) SYM \(\Leftrightarrow \) IIB string theory on \(\text{AdS}_5 \times S_5 \)
 \[
 ds^2 = L^2 \left[u^2 \eta_{\mu\nu} dx^\mu dx^\nu + \frac{\delta_{ij} dy^i dy^j}{u^2} \right]
 \]
 - \(L = \) (curvature) radius of \(S_5 \) and \(\text{AdS}_5 \), \(u^2 \equiv \sum_{i=1}^{6} (y^i)^2 \)
 - Parameters string coupling \(g_s \) and length scale \(\ell_s = \sqrt{\alpha'} \)

- AdS/CFT dictionary:
 - Radial coordinate in AdS \(\sim \) energy scale in CFT
 - \((L/\ell_s)^4 = \lambda, \ g_s = \lambda/(4\pi N_c) \)

- Beautiful aspect:
 - Classical sugra limit: string coupling \(g_s \ll 1 \) and \(L/\ell_s \gg 1 \)
 - Gauge theory at \(\lambda \gg 1, \ N_c \to \infty \Leftrightarrow \) Classical GR!
Fundamental flavors in AdS/CFT

- Karch, Katz: Fundamental $\mathcal{N} = 2$ hypermultiplet in field theory equivalent to adding a D7 brane on gravity side
 - Quarks \leftrightarrow Strings hanging from D7 brane
 - Mesons \leftrightarrow Strings with both endpoints on D7 branes
Fundamental flavors in AdS/CFT

- Karch, Katz: Fundamental $\mathcal{N} = 2$ hypermultiplet in field theory equivalent to adding a D7 brane on gravity side
 - Quarks ↔ Strings hanging from D7 brane
 - Mesons ↔ Strings with both endpoints on D7 branes
- Dynamics of D7 brane governed by DBI action:
 \[
 S_{DBI} = -\tau_7 L^8 \int d^4\xi \sqrt{\det \left(\frac{\partial y}{\partial \xi^a} \cdot \frac{\partial y}{\partial \xi^b} \right)}
 \]
 - D7 spans $\mathbb{R}^{3,1}$ and four y^i directions
Fundamental flavors in AdS/CFT

- Karch, Katz: Fundamental $\mathcal{N} = 2$ hypermultiplet in field theory equivalent to adding a D7 brane on gravity side
 - Quarks \leftrightarrow Strings hanging from D7 brane
 - Mesons \leftrightarrow Strings with both endpoints on D7 branes
- Dynamics of D7 brane governed by DBI action:
 \[
 S_{DBI} = -\tau_7 L^8 \int d^4\xi \sqrt{\det \left(\frac{\partial y}{\partial \xi^a} \cdot \frac{\partial y}{\partial \xi^b} \right)}
 \]
 - D7 spans $\mathbb{R}^{3,1}$ and four y^i directions
- Any number of parallel branes defined by two linear equations satisfy eom’s and preserve $\mathcal{N} = 2$ SUSY
 - Usual choice $y^5 = c_i$, $y^6 = 0$
Fundamental flavors in AdS/CFT

- Karch, Katz: Fundamental $\mathcal{N} = 2$ hypermultiplet in field theory equivalent to adding a D7 brane on gravity side
 - Quarks \Leftrightarrow Strings hanging from D7 brane
 - Mesons \Leftrightarrow Strings with both endpoints on D7 branes
- Dynamics of D7 brane governed by DBI action:
 \[
 S_{DBI} = -\tau_7 L^8 \int d^4\xi \sqrt{\det \left(\frac{\partial y}{\partial \xi^a} \cdot \frac{\partial y}{\partial \xi^b} \right)}
 \]
 - D7 spans $\mathbb{R}^{3,1}$ and four y^i directions
 - Any number of parallel branes defined by two linear equations satisfy eom’s and preserve $\mathcal{N} = 2$ SUSY
 - Usual choice $y^5 = c_i$, $y^6 = 0$
 - Large N_c counting: SUGRA \gg DBI \gg Nambu-Goto
Meson mass spectra

- Meson masses dual to fluctuation and rotation energies of strings hanging from D7 branes
Meson mass spectra

- Meson masses dual to fluctuation and rotation energies of strings hanging from D7 branes
- String may fluctuate in directions parallel and perpendicular to the D7 brane

\[
ds^2 = L^2 \left[(\rho^2 + y_5^2 + y_6^2) \left\{ -dt^2 + dr^2 + r^2 d\phi^2 + dx^2 \right\} \\
+ \frac{d\rho^2 + \rho^2 d\theta^2 + \rho^2 \sin^2 \theta d\Omega_2^2 + dy_5^2 + dy_6^2}{\rho^2 + y_5^2 + y_6^2} \right]
\]
Meson mass spectra

- Meson masses dual to fluctuation and rotation energies of strings hanging from D7 branes

- String may rotate in real (= 4d spin) and internal (= finite R charge) space

\[ds^2 = L^2 \left[(\rho^2 + y_5^2 + y_6^2) \left\{ -dt^2 + dr^2 + r^2 d\phi^2 + dx^2 \right\} \right. \]
\[+ \frac{d\rho^2 + \rho^2 d\theta^2 + \rho^2 \sin^2 \theta d\Omega^2 + dy_5^2 + dy_6^2}{\rho^2 + y_5^2 + y_6^2} \]
Meson mass spectra

- Meson masses dual to fluctuation and rotation energies of strings hanging from D7 branes
- Equal quark masses, small spin: Open string excitations of D7 brane (Kruczenski et al. hep-th/0304032)
 - Analytic spectrum $M_M \sim \frac{m_Q}{\sqrt{\lambda}}$
 - Spectrum depends on R charge and radial (ρ) excitation quantum numbers
Meson mass spectra

- Meson masses dual to fluctuation and rotation energies of strings hanging from D7 branes

- Equal quark masses, large 4d spin J: Classical solutions to string (Nambu-Goto) equations of motion for strings rotating in real space

$$S = -\frac{L^2}{2\pi\alpha'} \int dt \, d\sigma \frac{1}{z^2} \sqrt{(1 - \Omega^2 r^2)((z')^2 + (r')^2)}$$

- In the limit of large J, solutions U-shaped
- Energy in terms of J interpolates between Regge behavior at small J and the energy of two non-relativistic particles in Coulomb potential
Meson mass spectra

\[\omega \rightarrow 0 \]

- \(z = 0 \)
- \(\tilde{z} = 0 \)
- Boundary
- \(z = 1 \)
- \(\tilde{z} = \infty \)
- D7 brane

- \(\rho_0 \sim \omega^{-2/3} \)
- \(\tilde{\rho}_0 \sim \omega^{1/3} \)
- \(\tilde{z}_0 \sim \omega^{-2/3} \)
- \(\tilde{\omega}_0 \sim \omega^{1/3} \)
Meson mass spectra
What about non-equal masses?

- To explore heavy quark physics in strongly coupled $\mathcal{N} = 2$, want spectrum of heavy-light mesons, $m_h \gg m_l$
 - Preserving $\mathcal{N} = 2$ SUSY, ground state meson mass must satisfy $m_h - m_l < m_{HL} < m_h + m_l$
- Question: Is it possible to find fine and hyperfine structure from fluctuation spectra?
- Apparent answer: No (Erdmenger et al. hep-th/0605241)
 - Energy splitting proportional to m_h!
 - Could this be due to rigid string approximation?
- Rest of the talk: Finding the complete HL mass spectrum
What about non-equal masses?

▸ To explore heavy quark physics in strongly coupled $\mathcal{N} = 2$, want spectrum of heavy-light mesons, $m_h \gg m_l$
 ▸ Preserving $\mathcal{N} = 2$ SUSY, ground state meson mass must satisfy $m_h - m_l < m_{HL} < m_h + m_l$

▸ Question: Is it possible to find fine and hyperfine structure from fluctuation spectra?
 ▸ Apparent answer: No (Erdmenger et al. hep-th/0605241)
 ▸ Energy splitting proportional to $m_h!$
 ▸ Could this be due to rigid string approximation?
 ▸ Rest of the talk: Finding the complete HL mass spectrum
What about non-equal masses?

- To explore heavy quark physics in strongly coupled $\mathcal{N} = 2$, want spectrum of heavy-light mesons, $m_h \gg m_l$
 - Preserving $\mathcal{N} = 2$ SUSY, ground state meson mass must satisfy $m_h - m_l < m_{HL} < m_h + m_l$

- Question: Is it possible to find fine and hyperfine structure from fluctuation spectra?
- Apparent answer: No (Erdmenger et al. hep-th/0605241)
 - Energy splitting proportional to m_h!
 - Could this be due to rigid string approximation?

- Rest of the talk: Finding the complete HL mass spectrum
What about non-equal masses?

- To explore heavy quark physics in strongly coupled $\mathcal{N} = 2$, want spectrum of heavy-light mesons, $m_h \gg m_l$
 - Preserving $\mathcal{N} = 2$ SUSY, ground state meson mass must satisfy $m_h - m_l < m_{HL} < m_h + m_l$
- Question: Is it possible to find fine and hyperfine structure from fluctuation spectra?
- Apparent answer: No (Erdmenger et al. hep-th/0605241)
 - Energy splitting proportional to m_h
 - Could this be due to rigid string approximation?
- Rest of the talk: Finding the complete HL mass spectrum
Outline

Heavy quarks in QCD
 Preliminaries
 Heavy quark limit of QCD

Meson spectroscopy in strongly coupled $\mathcal{N} = 2$ SYM
 Basics of AdS/CFT
 Meson spectra: Preliminaries
 Heavy-light puzzle

Holographic heavy-light mesons
 Fluctuations: Preliminaries
 Fluctuation spectra
 Rotating strings: Preliminaries
 Rotating strings: Results

Conclusions
String fluctuations

- Starting point: Choose $\sigma = y_5 \equiv y$ and consider

 $$m_l = \frac{L^2}{2\pi\alpha'} y_l \ll \frac{L^2}{2\pi\alpha'} y_h = m_h$$

- Solve for fluctuations in x, ρ and y_6 around $x = y_6 = 0$, $\rho = \rho_0$, using quadratic Nambu-Goto action

- Integrate π^0_t over σ to obtain

 $$E = m_h - m_l + \sum_{w,n} N_{w}^{n} \omega_n^w$$

- Valid for $N_w^n \ll \sqrt{\lambda}$
String fluctuations

- Starting point: Choose $\sigma = y_5 \equiv y$ and consider
 \[m_I = \frac{L^2}{2\pi\alpha'} y_I \ll \frac{L^2}{2\pi\alpha'} y_h = m_h \]

- Solve for fluctuations in x, ρ and y_6 around $x = y_6 = 0$, $\rho = \rho_0$, using quadratic Nambu-Goto action

- Integrate π_t^0 over σ to obtain
 \[E = m_h - m_I + \sum_{w,n} N_w^n \omega_n^w \]

- Valid for $N_w^n \ll \sqrt{\lambda}$

Aleksi Vuorinen, CERN Tuning the heavy-light guitar
String fluctuations

- Starting point: Choose $\sigma = y_5 \equiv y$ and consider
 \[m_l = \frac{L^2}{2\pi\alpha' y_5} \ll \frac{L^2}{2\pi\alpha'} y_h = m_h \]

- Solve for fluctuations in x, ρ and y_6 around $x = y_6 = 0$, $\rho = \rho_0$, using quadratic Nambu-Goto action

- Integrate π_1^0 over σ to obtain
 \[E = m_h - m_l + \sum_{w,n} N_n^w \omega_n^w \]

- Valid for $N_n^w \ll \sqrt{\lambda}$
x and y\textsubscript{6} fluctuations

- Defining \(q \equiv \rho_0 L^2 / (2\pi \alpha') \) and using \(L^2 / \alpha' = \sqrt{\lambda} \), we obtain analytically

\[
E_n^{x} = E_n^{y} = m_h - m_l + \frac{2\pi q}{\sqrt{\lambda}} \sqrt{\frac{n^2 \pi^2}{(\arctan[q/m_l] - \arctan[q/m_h])^2}} - 1
\]

- For \(x \) fluctuations, in addition a zero mode

- Above function monotonously increasing in \(q \Rightarrow \) For non-spinning, fluctuating string, set \(q = 0 \)

\[
E_n^{x} = E_n^{y} = m_h - m_l + \frac{m_h m_l}{m_h - m_l} \frac{2\pi^2 n}{\sqrt{\lambda}}
\]

- For \(m_h \gg m_l \), factor \(1/(1 - m_l/m_h) \) leads to heavy mass independence & fine structure in energy splittings!

- Very natural: Compare to guitar string
\textbf{x and y}_6 \textbf{fluctuations}

- Defining \(q \equiv \rho_0 L^2 / (2\pi \alpha') \) and using \(L^2 / \alpha' = \sqrt{\lambda} \), we obtain analytically

\[
E_n^x = E_n^y = m_h - m_l + \frac{2\pi q}{\sqrt{\lambda}} \sqrt{\frac{n^2 \pi^2}{(\arctan[q/m_l] - \arctan[q/m_h])^2}} - 1
\]

- For \(x \) fluctuations, in addition a zero mode

- Above function monotonously increasing in \(q \) \(\Rightarrow \) For non-spinning, fluctuating string, set \(q = 0 \)

\[
E_n^x = E_n^y = m_h - m_l + \frac{m_h m_l}{m_h - m_l} \frac{2\pi^2 n}{\sqrt{\lambda}}
\]

- For \(m_h \gg m_l \), factor \(1/(1 - m_l/m_h) \) leads to heavy mass independence & fine structure in energy splittings!

- Very natural: Compare to guitar string
x and y₆ fluctuations

- Defining \(q \equiv \rho_0 L^2/(2\pi\alpha') \) and using \(L^2/\alpha' = \sqrt{\lambda} \), we obtain analytically

\[
E_n^x = E_n^y = m_h - m_l + \frac{2\pi q}{\sqrt{\lambda}} \sqrt{\frac{n^2\pi^2}{(\arctan[q/m_l] - \arctan[q/m_h])^2}} - 1
\]

- For \(x \) fluctuations, in addition a zero mode

- Above function monotonously increasing in \(q \Rightarrow \) For non-spinning, fluctuating string, set \(q = 0 \)

\[
E_n^x = E_n^y = m_h - m_l + \frac{m_h m_l}{m_h - m_l} \frac{2\pi^2 n}{\sqrt{\lambda}}
\]

- For \(m_h \gg m_l \), factor \(1/(1 - m_l/m_h) \) leads to heavy mass independence & fine structure in energy splittings!

- Very natural: Compare to guitar string

Aleksi Vuorinen, CERN

Tuning the heavy-light guitar
\(\delta \rho \) fluctuations

- Equation of motion not analytically solvable \(\Rightarrow \) Must resort to numerics
\(\delta \rho \) fluctuations

- Equation of motion not analytically solvable \(\Rightarrow \) Must resort to numerics
- Expansion in \(m_l/m_h \) gives

\[
\frac{E_n^\rho - m_h + m_l}{m_l} = \frac{2\pi}{\sqrt{\lambda}} \left\{ \omega_{n,0}(q/m_l) + \frac{m_l^3}{m_h^3} \omega_{n,3}(q/m_l) + \mathcal{O}(m_l^4/m_h^4) \right\}
\]

Aleksi Vuorinen, CERN

Tuning the heavy-light guitar
Spinning strings

- Want to model mesons with spin and electric charge
 - Mesons w/ 4d spin J dual to strings rotating in real space
 - Mesons w/ R charge Q dual to strings rotating in int. space
- Assume uniform rotation in time and t indep. string profile
 - $\phi = \Omega t$, $\theta = \Omega t$
 - $r = r(z) = r(1/u)$, $\rho = \rho(y)$
- (Numerically) solve full equations of motion for r and ρ, integrate π_A to obtain $E(\Omega)$ and $J(\Omega)/Q(\Omega)$, and invert for $E(J/Q)$
- Immediate observations (for int. space, $J \rightarrow Q$):
 - Small $\Omega \Leftrightarrow$ large J, large $\Omega \Leftrightarrow$ small J (one exception)
 - $E = m_h - m_l + m_l \times f(2\pi J/\sqrt{\lambda})$
Spinning strings

- Want to model mesons with spin and electric charge
 - Mesons w/ 4d spin J dual to strings rotating in real space
 - Mesons w/ R charge Q dual to strings rotating in int. space
- Assume uniform rotation in time and t indep. string profile
 - $\phi = \Omega t$, $\theta = \Omega t$
 - $r = r(z) = r(1/u)$, $\rho = \rho(y)$
- (Numerically) solve full equations of motion for r and ρ, integrate π_A to obtain $E(\Omega)$ and $J(\Omega) / Q(\Omega)$, and invert for $E(J/Q)$
- Immediate observations (for int. space, $J \rightarrow Q$):
 - Small $\Omega \Leftrightarrow$ large J, large $\Omega \Leftrightarrow$ small J (one exception)
 - $E = m_h - m_l + m_l \times f(2\pi J/\sqrt{\lambda})$
Spinning strings

- Want to model mesons with spin and electric charge
 - Mesons w/ 4d spin J dual to strings rotating in real space
 - Mesons w/ R charge Q dual to strings rotating in int. space
- Assume uniform rotation in time and t indep. string profile
 - $\phi = \Omega t$, $\theta = \Omega t$
 - $r = r(z) = r(1/u)$, $\rho = \rho(y)$
- (Numerically) solve full equations of motion for r and ρ, integrate π_A to obtain $E(\Omega)$ and $J(\Omega) / Q(\Omega)$, and invert for $E(J/Q)$
- Immediate observations (for int. space, $J \rightarrow Q$):
 - Small Ω \leftrightarrow large J, large Ω \leftrightarrow small J (one exception)
 - $E = m_h - m_l + m_l \times f(2\pi J/\sqrt{\lambda})$
Spinning strings

- Want to model mesons with spin and electric charge
 - Mesons w/ 4d spin J dual to strings rotating in real space
 - Mesons w/ R charge Q dual to strings rotating in int. space
- Assume uniform rotation in time and t indep. string profile
 - $\phi = \Omega t$, $\theta = \Omega t$
 - $r = r(z) = r(1/u)$, $\rho = \rho(y)$
- (Numerically) solve full equations of motion for r and ρ, integrate π_A to obtain $E(\Omega)$ and $J(\Omega) / Q(\Omega)$, and invert for $E(J/Q)$
- Immediate observations (for int. space, $J \rightarrow Q$):
 - Small $\Omega \iff$ large J, large $\Omega \iff$ small J (one exception)
 - $E = m_h - m_l + m_l \times f(2\pi J/\sqrt{\lambda})$
Small J / Q limit accessible from fluctuation calculation

- $E_{r\phi} = m_h - m_l + m_l \omega_n \frac{2 \pi J}{y_1 \sqrt{\lambda}}$ and $E_{\rho\theta} = m_h - m_l + m_l \omega_n z_1 \frac{2 \pi Q}{\sqrt{\lambda}}$
- n counts extrema in string profile

Increasing J / Q, find continuous family of solutions indexed by n

Critical J / Q values at $E \approx m_h$ and $E \approx m_h + m_l$

- $E \approx m_h$: Light endpoint of string reaches speed of light \Rightarrow Transition to long strings
- $E \approx m_h + m_l$: Solutions break down at finite J / Q, as $\Omega \rightarrow 0$ (exception $n = 1$ branch of real space case)

Curiosities

- For real space $n = 1$ branch, first critical point at $E = m_h - m_l^2 / (2m_h) + \ldots$
- In internal space case, additional $n = 0$ branch from uplifting of zero mode
Small J/Q limit accessible from fluctuation calculation

- $E_{r\phi} = m_h - m_l + m_l\omega_n\frac{2\pi J}{y_1\sqrt{\lambda}}$ and $E_{\rho\theta} = m_h - m_l + m_l\omega_n z l\frac{2\pi Q}{\sqrt{\lambda}}$
- n counts extrema in string profile

Increasing J/Q, find continuous family of solutions indexed by n

- Critical J/Q values at $E \approx m_h$ and $E \approx m_h + m_l$
 - $E \approx m_h$: Light endpoint of string reaches speed of light \Rightarrow Transition to long strings
 - $E \approx m_h + m_l$: Solutions break down at finite J/Q, as $\Omega \to 0$ (exception $n = 1$ branch of real space case)

Curiosities

- For real space $n = 1$ branch, first critical point at $E = m_h - m_l^2/(2m_h) + \ldots$
- In internal space case, additional $n = 0$ branch from uplifting of zero mode
Small J/Q limit accessible from fluctuation calculation

- $E_{r\phi} = m_h - m_l + m_l \omega_n \frac{2\pi J}{y_l \sqrt{\lambda}}$ and $E_{\rho\theta} = m_h - m_l + m_l \omega_n z_l \frac{2\pi Q}{\sqrt{\lambda}}$
- n counts extrema in string profile

Increasing J/Q, find continuous family of solutions indexed by n

Critical J/Q values at $E \approx m_h$ and $E \approx m_h + m_l$

- $E \approx m_h$: Light endpoint of string reaches speed of light \Rightarrow Transition to long strings
- $E \approx m_h + m_l$: Solutions break down at finite J/Q, as $\Omega \to 0$ (exception $n = 1$ branch of real space case)

Curiosities

- For real space $n = 1$ branch, first critical point at $E = m_h - m_l^2/(2m_h) + \ldots$
- In internal space case, additional $n = 0$ branch from uplifting of zero mode
Small J/Q limit accessible from fluctuation calculation

- $E_{r\phi} = m_h - m_l + m_l \omega_n \frac{2\pi J}{\sqrt[4]{\lambda}}$ and $E_{\rho\theta} = m_h - m_l + m_l \omega_n z_l \frac{2\pi Q}{\sqrt[4]{\lambda}}$
- n counts extrema in string profile

Increasing J/Q, find continuous family of solutions indexed by n

Critical J/Q values at $E \approx m_h$ and $E \approx m_h + m_l$

- $E \approx m_h$: Light endpoint of string reaches speed of light \Rightarrow Transition to long strings
- $E \approx m_h + m_l$: Solutions break down at finite J/Q, as $\Omega \to 0$ (exception $n = 1$ branch of real space case)

Curiosities

- For real space $n = 1$ branch, first critical point at $E = m_h - m_l^2/(2m_h) + \ldots$
- In internal space case, additional $n = 0$ branch from uplifting of zero mode
Strings spinning in real space
Strings spinning in real space

\[\frac{E - m_h + m_l}{m_l} \]

\[\frac{2 \pi J}{\sqrt{\lambda}} \]

Aleksi Vuorinen, CERN Tuning the heavy-light guitar
Strings spinning in real space

For $n = 1$ branch, large J limit from classical system of two particles in Coulomb potential

$$E = m_h + m_l - 2 \left(\frac{\Gamma(3/4)}{\Gamma(1/4)} \right)^4 \frac{m_l m_h}{m_h + m_l} \frac{\lambda}{J^2}$$
Strings spinning in internal space
Strings spinning in internal space

\[\frac{E - m_h + m_i}{m_l} \]

\[\frac{2 \pi Q}{\sqrt{\lambda}} \]
Internal space $n = 0$ branch

- $n = 0$ branch appears from uplift of zero fluctuation mode
 - Small $\Omega \iff$ Small Q
 - Small Q limit analytically obtainable and non-Regge-like

\[E \approx m_h - m_l + \frac{m_l}{2\gamma} \left(\frac{2\pi Q}{\sqrt{\lambda}} \right)^2 \]

- As $\Omega, Q \to 0$, string profile approaches constant
 - $\rho = \rho_0 = 0$ or $1.825y_l$!

- No long strings: Solution break down when $E \approx m_h$
Internal space \(n = 0 \) branch

- \(n = 0 \) branch appears from uplift of zero fluctuation mode
 - Small \(\Omega \) \(\Leftrightarrow \) Small \(Q \)
 - Small \(Q \) limit analytically obtainable and non-Regge-like
 \[
 E \approx m_h - m_l + \frac{m_l}{2\gamma} \left(\frac{2\pi Q}{\sqrt{\lambda}} \right)^2
 \]
 - As \(\Omega, Q \to 0 \), string profile approaches constant
 - \(\rho = \rho_0 = 0 \) or 1.825\(y_I \)!
 - No long strings: Solution break down when \(E \approx m_h \)
Internal space $n = 0$ branch

- $n = 0$ branch appears from uplift of zero fluctuation mode
 - Small $\Omega \Leftrightarrow$ Small Q
 - Small Q limit analytically obtainable and non-Regge-like

$$E \approx m_h - m_l + \frac{m_l}{2\gamma} \left(\frac{2\pi Q}{\sqrt{\lambda}}\right)^2$$

- As $\Omega, Q \rightarrow 0$, string profile approaches constant
 - $\rho = \rho_0 = 0$ or $1.825y_l$!

- No long strings: Solution break down when $E \approx m_h$
Internal space $n = 0$ branch

- $n = 0$ branch appears from uplift of zero fluctuation mode
 - Small $\Omega \Leftrightarrow$ Small Q
 - Small Q limit analytically obtainable and non-Regge-like
 \[
 E \approx m_h - m_l + \frac{m_l}{2\gamma} \left(\frac{2\pi Q}{\sqrt{\lambda}} \right)^2
 \]
- As $\Omega, Q \to 0$, string profile approaches constant
 - $\rho = \rho_0 = 0$ or $1.825y_l$!
- No long strings: Solution break down when $E \approx m_h$
Outline

Heavy quarks in QCD
 Preliminaries
 Heavy quark limit of QCD

Meson spectroscopy in strongly coupled $\mathcal{N} = 2$ SYM
 Basics of AdS/CFT
 Meson spectra: Preliminaries
 Heavy-light puzzle

Holographic heavy-light mesons
 Fluctuations: Preliminaries
 Fluctuation spectra
 Rotating strings: Preliminaries
 Rotating strings: Results

Conclusions

Aleksi Vuorinen, CERN Tuning the heavy-light guitar
Summary and conclusions

- AdS/CFT duality offers a novel way of looking into physics of bound hadronic states in $\mathcal{N} = 2$ SYM
 - Interesting possibilities for comparison with perturbative HQET predictions
- In this talk: Spectrum of heavy-light mesons in $\mathcal{N} = 2$
 - Heavy mass independence of mass splittings, *i.e.* fine structure, found both from fluctuating and rotating strings
 - Hyper-fine splitting not immediately visible; perhaps less SUSY could help
 - Smallness of observed EM splittings in accordance with small-Q limit of $n = 0$ branch energy
- Still to do: Intersecting branes (less SUSY), different ground states, hybrid mesons,...
Summary and conclusions

- AdS/CFT duality offers a novel way of looking into physics of bound hadronic states in $\mathcal{N} = 2$ SYM
 - Interesting possibilities for comparison with perturbative HQET predictions
- In this talk: Spectrum of heavy-light mesons in $\mathcal{N} = 2$
 - Heavy mass independence of mass splittings, i.e. fine structure, found both from fluctuating and rotating strings
 - Hyper-fine splitting not immediately visible; perhaps less SUSY could help
 - Smallness of observed EM splittings in accordance with small-Q limit of $n = 0$ branch energy
- Still to do: Intersecting branes (less SUSY), different ground states, hybrid mesons, …
Summary and conclusions

► AdS/CFT duality offers a novel way of looking into physics of bound hadronic states in $\mathcal{N} = 2$ SYM
 ► Interesting possibilities for comparison with perturbative HQET predictions
► In this talk: Spectrum of heavy-light mesons in $\mathcal{N} = 2$
 ► Heavy mass independence of mass splittings, i.e. fine structure, found both from fluctuating and rotating strings
 ► Hyper-fine splitting not immediately visible; perhaps less SUSY could help
 ► Smallness of observed EM splittings in accordance with small-Q limit of $n = 0$ branch energy
► Still to do: Intersecting branes (less SUSY), different ground states, hybrid mesons, . . .