Holographic entanglement entropy for time dependent states and disconnected regions

Veronika Hubeny

Durham University

INT08: From Strings to Things, April 3, 2008

VH, M. Rangamani, T. Takayanagi, arXiv:0705.0016

VH & M. Rangamani, arXiv:0711.4118
1 Motivation & background

2 Entanglement entropy with time-dependence
 - Candidate covariant constructions
 - Tests & applications

3 Entanglement entropy for disconnected regions
 - Proof for disconnected regions in 1 + 1 dimensions
 - Conjecture for disconnected regions in 2 + 1 dimensions

4 Summary and future directions
Entanglement Entropy

- Entanglement entropy of a given region \mathcal{A} in the bdy CFT encodes the number of entangled/operative degrees of freedom.
- Applications to condensed matter systems, quantum information, ...
- It is the von Neumann entropy for reduced density matrix $\rho_{\mathcal{A}}$:

$$S_{\mathcal{A}} = -\text{Tr} \rho_{\mathcal{A}} \log \rho_{\mathcal{A}}$$

where $\rho_{\mathcal{A}}$ is trace of density matrix over the complement of \mathcal{A}.
- Depends on theory, state, and region \mathcal{A}.

FT motivation

Study operative DOF under time-dependence and for non-trivial (disconnected) regions
Entanglement Entropy

- Entanglement entropy of a given region \mathcal{A} in the bdy CFT encodes the # of entangled/operative degrees of freedom.
- Applications to condensed matter systems, quantum information, ...
- It is the von Neumann entropy for reduced density matrix $\rho_{\mathcal{A}}$:
 \[S_{\mathcal{A}} = -\text{Tr} \rho_{\mathcal{A}} \log \rho_{\mathcal{A}} \]

 where $\rho_{\mathcal{A}}$ is trace of density matrix over the complement of \mathcal{A}.
- Depends on theory, state, and region \mathcal{A}.

FT motivation

Study operative DOF under time-dependence and for non-trivial (disconnected) regions
Entanglement Entropy

- Entanglement entropy of a given region \mathcal{A} in the bdy CFT encodes the number of entangled/operative degrees of freedom.
- Applications to condensed matter systems, quantum information, ...
- It is the von Neumann entropy for reduced density matrix $\rho_\mathcal{A}$:
 \[S_\mathcal{A} = -\text{Tr} \rho_\mathcal{A} \log \rho_\mathcal{A} \]
 where $\rho_\mathcal{A}$ is trace of density matrix over the complement of \mathcal{A}.
- Depends on theory, state, and region \mathcal{A}.

FT motivation

Study operative DOF under time-dependence and for non-trivial (disconnected) regions
Entanglement Entropy

- Entanglement entropy of a given region \mathcal{A} in the bdy CFT encodes the number of entangled/operative degrees of freedom.
- Applications to condensed matter systems, quantum information, ...
- It is the von Neumann entropy for reduced density matrix $\rho_\mathcal{A}$:

$$S_\mathcal{A} = -\text{Tr} \rho_\mathcal{A} \log \rho_\mathcal{A}$$

where $\rho_\mathcal{A}$ is trace of density matrix over the complement of \mathcal{A}.
- Depends on theory, state, and region \mathcal{A}.

FT motivation

Study operative DOF under time-dependence and for non-trivial (disconnected) regions
AdS/CFT correspondence provides a useful framework for addressing questions in quantum gravity, e.g. emergence of spacetime. To make full use of this, we need to understand the AdS/CFT dictionary better.

Holographic dual of EE is a geometric quantity ⇒ we can use entanglement entropy to study bulk geometry.
Probing AdS/CFT

• AdS/CFT correspondence provides a useful framework for addressing questions in quantum gravity e.g. emergence of spacetime

• To make full use of this, we need to understand the AdS/CFT dictionary better.

QG motivation

Study bulk geometry in AdS/CFT

• Holographic dual of EE is a geometric quantity
 ⇒ we can use entanglement entropy to study bulk geometry.
AdS/CFT correspondence provides a useful framework for addressing questions in quantum gravity e.g. emergence of spacetime.

To make full use of this, we need to understand the AdS/CFT dictionary better.

Holographic dual of EE is a geometric quantity ⇒ we can use entanglement entropy to study bulk geometry.
Holographic Entanglement Entropy

- Area law of entanglement entropy: \(S_A \sim \text{area of } \partial A \)
 suggestive of a holographic relation...

- Holographic dual of entanglement entropy (for static bulk ST) = area of minimal co-dim. 2 surface \(S \) in bulk anchored at \(\partial A \) (e.g. in 3-D bulk, given by zero energy spacelike geodesics)

Ryu & Takayanagi
Fursaev
Holographic Entanglement Entropy

- Area law of entanglement entropy: $S_A \sim \text{area of } \partial A$
suggestive of a holographic relation...

- Holographic dual of entanglement entropy (for static bulk ST)
 $= \text{area of minimal co-dim. 2 surface } S \text{ in bulk anchored at } \partial A$
 (e.g. in 3-D bulk, given by zero energy spacelike geodesics)

$$S_A = \frac{\text{Area}(S)}{4 G_N^{(d+1)}}$$

- UV divergence matches

Ryu & Takayanagi
Fursaev

Veronika Hubeny
Holographic Entanglement Entropy

- Area law of entanglement entropy: $S_A \sim \text{area of } \partial A$
 suggestive of a holographic relation...

- Holographic dual of entanglement entropy (for static bulk ST)
 $= \text{area of mimimal co-dim. 2 surface } S \text{ in bulk anchored at } \partial A$
 (e.g. in 3-D bulk, given by zero energy spacelike geodesics)

$$S_A = \frac{\text{Area}(S)}{4 \ G_N^{(d+1)}}$$

- UV divergence matches
1 Motivation & background

2 Entanglement entropy with time-dependence
 - Candidate covariant constructions
 - Tests & applications

3 Entanglement entropy for disconnected regions
 - Proof for disconnected regions in $1+1$ dimensions
 - Conjecture for disconnected regions in $2+1$ dimensions

4 Summary and future directions
In Lorentzian spacetime, \(\not\exists \) minimal area surface
(we can decrease area of spacelike surface by wiggling in time)

- We could bypass this by separating time & space directions
 (cf. in static spacetime, work on a const. \(t \) slice)
- But in a general, time-dependent background, there is no natural time slicing...

Strategy:

Seek covariantly-defined co-dim.2 surfaces which:
- reduce to minimal surface \(S \) in static backgrounds
- end on \(\partial A \) at boundary
In Lorentzian spacetime, there is no \textit{minimal} area surface (we can decrease area of spacelike surface by wiggling in time).

We could bypass this by separating time & space directions (cf. in static spacetime, work on a const. t slice).

But in a general, time-dependent background, there is no natural time slicing...

\textbf{Strategy:}

Seek \textit{covariantly-defined} co-dim.2 surfaces which:

- reduce to minimal surface S in static backgrounds
- end on ∂A at boundary
Difficulty in time-dependent backgrounds

- In Lorentzian spacetime, there is no minimal area surface (we can decrease area of spacelike surface by wiggling in time).
- We could bypass this by separating time & space directions (cf. in static spacetime, work on a const. t slice).
- But in a general, time-dependent background, there is no natural time slicing...

Strategy:

Seek covariantly-defined co-dim.2 surfaces which:
- reduce to minimal surface S in static backgrounds
- end on ∂A at boundary
Difficulty in time-dependent backgrounds

- In Lorentzian spacetime, \(\nexists \) minimal area surface (we can decrease area of spacelike surface by wiggling in time)
- We could bypass this by separating time & space directions (cf. in static spacetime, work on a const. \(t \) slice)
- But in a general, time-dependent background, there is no natural time slicing...

Strategy:

Seek *covariantly-defined* co-dim.2 surfaces which:
- reduce to minimal surface \(S \) in static backgrounds
- end on \(\partial A \) at boundary
Set-up

- start with asymp. AdS bulk \mathcal{M} and boundary $\partial\mathcal{M}$ (corresp. state)
- pick a time t on the $\partial\mathcal{M}$ (well-defined: fixed static bgd)
- pick a region \mathcal{A} on $\partial\mathcal{M}$ at time t (bulk co-dim.2)
- we want to construct a co-dim.2, covariantly defined, surface in \mathcal{M} anchored on $\partial\mathcal{A}$

We’ll consider 4 candidate surfaces, \mathcal{W}, \mathcal{X}, \mathcal{Y}, and \mathcal{Z}.
Set-up

- start with asymp. AdS bulk \mathcal{M} and boundary $\partial \mathcal{M}$ (corresp. state)
- pick a time t on the $\partial \mathcal{M}$ (well-defined: fixed static bgd)
- pick a region A on $\partial \mathcal{M}$ at time t (bulk co-dim.2)
- we want to construct a co-dim.2, covariantly defined, surface in \mathcal{M} anchored on ∂A

We’ll consider 4 candidate surfaces, \mathcal{W}, \mathcal{X}, \mathcal{Y}, and \mathcal{Z}.
Set-up

- start with asymp. AdS bulk \mathcal{M} and boundary $\partial \mathcal{M}$ (corresp. state)
- pick a time t on the $\partial \mathcal{M}$ (well-defined: fixed static bgd)
- pick a region \mathcal{A} on $\partial \mathcal{M}$ at time t (bulk co-dim.2)
- we want to construct a co-dim.2, covariantly defined, surface in \mathcal{M} anchored on $\partial \mathcal{A}$

We’ll consider 4 candidate surfaces, \mathcal{W}, \mathcal{X}, \mathcal{Y}, and \mathcal{Z}.
Set-up

- start with asymp. AdS bulk \mathcal{M} and boundary $\partial \mathcal{M}$ (corresp. state)
- pick a time t on the $\partial \mathcal{M}$ (well-defined: fixed static bgd)
- pick a region A on $\partial \mathcal{M}$ at time t (bulk co-dim.2)
- we want to construct a co-dim.2, covariantly defined, surface in \mathcal{M} anchored on ∂A

We’ll consider 4 candidate surfaces, \mathcal{W}, \mathcal{X}, \mathcal{Y}, and \mathcal{Z}.
Construction I:

- pick a region A on ∂M at time t
- find maximal-area spacelike slice Σ in M anchored at t on ∂M
- $K_{\mu}{}^{\mu} = 0$
- on Σ, find minimal-area surface X in M with $\partial X = \partial A$

This is natural if EE pertains to a given time slice...
Minimal surface on maximal slice, \mathcal{X}

Construction I:

- pick a region \mathcal{A} on ∂M at time t
- find maximal-area spacelike slice Σ in M anchored at t on ∂M

$$K_{\mu}^{\mu} = 0$$

- on Σ, find minimal-area surface \mathcal{X} in M with $\partial \mathcal{X} = \partial \mathcal{A}$

This is natural if EE pertains to a given time slice...
Motivation | Time-dependent | Multi-region | Summary | Obstacle | Constructions | Tests | Applications

Minimal surface on maximal slice, \mathcal{X}

Construction I:

- pick a region \mathcal{A} on $\partial \mathcal{M}$ at time t
- find maximal-area spacelike slice Σ in \mathcal{M} anchored at t on $\partial \mathcal{M}$

\[K_{\mu}^{\mu} = 0 \]

- on Σ, find minimal-area surface \mathcal{X} in \mathcal{M} with $\partial \mathcal{X} = \partial \mathcal{A}$

This is natural if EE pertains to a given time slice...
Minimal surface on maximal slice, \mathcal{X}

Construction I:
- pick a region \mathcal{A} on ∂M at time t
- find maximal-area spacelike slice Σ in M anchored at t on ∂M

\[K_{\mu}^{\mu} = 0 \]

- on Σ, find minimal-area surface \mathcal{X} in M with $\partial \mathcal{X} = \partial \mathcal{A}$

This is natural if EE pertains to a given time slice...
Extremal surface, \mathcal{W}

Construction II:
1. pick a region \mathcal{A} on ∂M at time t
2. find an extremal surface \mathcal{W} in M with $\partial \mathcal{W} = \partial \mathcal{A}$
 (if there are several solutions, pick the one with minimal-area)
3. if bulk is 3-dimensional, \mathcal{W} is a spacelike geodesic anchored at $\partial \mathcal{A}$

This is most natural extension of S, but no longer pertains to particular spacelike slice of bulk.
Construction II:

- pick a region \mathcal{A} on ∂M at time t
- find an extremal surface \mathcal{W} in M with $\partial \mathcal{W} = \partial \mathcal{A}$
 (if there are several solutions, pick the one with minimal-area)
- if bulk is 3-dimensional, \mathcal{W} is a spacelike geodesic anchored at $\partial \mathcal{A}$

This is most natural extension of S, but no longer pertains to particular spacelike slice of bulk.
Extremal surface, \mathcal{W}

Construction II:
- pick a region \mathcal{A} on ∂M at time t
- find an extremal surface \mathcal{W} in M with $\partial \mathcal{W} = \partial \mathcal{A}$
 (if there are several solutions, pick the one with minimal-area)
- if bulk is 3-dimensional, \mathcal{W} is a spacelike geodesic anchored at $\partial \mathcal{A}$

This is most natural extension of S, but no longer pertains to particular spacelike slice of bulk.
Motivation Time-dependent Multi-region Summary

Obstacle Constructions Tests Applications

Extremal surface, \mathcal{W}

Construction II:

- pick a region \mathcal{A} on $\partial \mathcal{M}$ at time t
- find an extremal surface \mathcal{W} in \mathcal{M} with $\partial \mathcal{W} = \partial \mathcal{A}$
 (if there are several solutions, pick the one with minimal-area)
- if bulk is 3-dimensional, \mathcal{W} is a spacelike geodesic anchored at $\partial \mathcal{A}$

This is most natural extension of \mathcal{S}, but no longer pertains to particular spacelike slice of bulk.
Light-sheet construction, \(\mathcal{Y} \)

Construction III:
- pick a region \(A \) on \(\partial \mathcal{M} \) at time \(t \)
- consider light sheets in \(\mathcal{M} \) (non-positive null expansions \(\theta_{\pm} \))
- find the surface \(\mathcal{Y} \) in \(\mathcal{M} \) with \(\partial \mathcal{Y} = \partial A \) from which both expansions vanish

\[\theta_+ = \theta_- = 0 \]

Turns out: equivalent to the extremal surface \(\mathcal{W} \);
Cf. Bousso’s Covariant Entropy bound...
Construction III:
- pick a region \mathcal{A} on $\partial \mathcal{M}$ at time t
- consider light sheets in \mathcal{M} (non-positive null expansions θ_\pm)
- find the surface \mathcal{Y} in \mathcal{M} with $\partial \mathcal{Y} = \partial \mathcal{A}$ from which both expansions vanish

$$\theta_+ = \theta_- = 0$$

Turns out: equivalent to the extremal surface \mathcal{W}; Cf. Bousso’s Covariant Entropy bound...
Construction III:

- pick a region \mathcal{A} on $\partial \mathcal{M}$ at time t
- consider light sheets in \mathcal{M} (non-positive null expansions θ_{\pm})
- find the surface \mathcal{Y} in \mathcal{M} with $\partial \mathcal{Y} = \partial \mathcal{A}$ from which both expansions vanish

$$\theta_+ = \theta_- = 0$$

Turns out: equivalent to the extremal surface \mathcal{W}; Cf. Bousso’s Covariant Entropy bound...
Light-sheet construction, \mathcal{Y}

Construction III:
- pick a region \mathcal{A} on $\partial \mathcal{M}$ at time t
- consider light sheets in \mathcal{M}
 (non-positive null expansions θ_{\pm})
- find the surface \mathcal{Y} in \mathcal{M} with $\partial \mathcal{Y} = \partial \mathcal{A}$
 from which both expansions vanish

$$\theta_+ = \theta_- = 0$$

Turns out: equivalent to the extremal surface \mathcal{W};
Cf. Bousso’s Covariant Entropy bound...
Causal construction, \mathcal{Z}

Construction IV:
- pick a region \mathcal{A} on $\partial \mathcal{M}$ at time t
- find the domain of dependence $D^{\pm}[\mathcal{A}]$ in $\partial \mathcal{M}$
- find the causal wedge of $D^{\pm}[\mathcal{A}]$ in \mathcal{M} and consider its boundary in \mathcal{M}
- inside this co-dim.1 surface, find maximal-area surface \mathcal{Z} in \mathcal{M} with $\partial \mathcal{Z} = \partial \mathcal{A}$

Simpler to compute, but does not necessarily reduce to \mathcal{S} for static spacetimes... (may provide a bound for the EE)
Causal construction, Z

Construction IV:
- pick a region A on ∂M at time t
- find the domain of dependence $D^{\pm}[A]$ in ∂M
- find the causal wedge of $D^{\pm}[A]$ in M and consider its boundary in M
- inside this co-dim.1 surface, find maximal-area surface Z in M with $\partial Z = \partial A$

Simpler to compute, but does not necessarily reduce to S for static spacetimes... (may provide a bound for the EE)
Causal construction, \(\mathcal{Z} \)

Construction IV:
- pick a region \(\mathcal{A} \) on \(\partial \mathcal{M} \) at time \(t \)
- find the domain of dependence \(D^\pm[\mathcal{A}] \) in \(\partial \mathcal{M} \)
- find the causal wedge of \(D^\pm[\mathcal{A}] \) in \(\mathcal{M} \) and consider its boundary in \(\mathcal{M} \)
- inside this co-dim.1 surface, find maximal-area surface \(\mathcal{Z} \) in \(\mathcal{M} \) with \(\partial \mathcal{Z} = \partial \mathcal{A} \)

Simpler to compute, but does not necessarily reduce to \(S \) for static spacetimes... (may provide a bound for the EE)
Causal construction, \mathcal{Z}

Construction IV:

- pick a region \mathcal{A} on ∂M at time t
- find the domain of dependence $D^\pm[\mathcal{A}]$ in ∂M
- find the causal wedge of $D^\pm[\mathcal{A}]$ in M and consider its boundary in M
- inside this co-dim.1 surface, find maximal-area surface \mathcal{Z} in M with $\partial \mathcal{Z} = \partial \mathcal{A}$

Simpler to compute, but does not necessarily reduce to \mathcal{S} for static spacetimes... (may provide a bound for the EE)
Causal construction, \mathcal{Z}

Construction IV:
- pick a region \mathcal{A} on $\partial \mathcal{M}$ at time t
- find the domain of dependence $D^{\pm}[\mathcal{A}]$ in $\partial \mathcal{M}$
- find the causal wedge of $D^{\pm}[\mathcal{A}]$ in \mathcal{M} and consider its boundary in \mathcal{M}
- inside this co-dim.1 surface, find maximal-area surface \mathcal{Z} in \mathcal{M} with $\partial \mathcal{Z} = \partial \mathcal{A}$

Simpler to compute, but does not necessarily reduce to \mathcal{S} for static spacetimes... (may provide a bound for the EE)
Relations between constructions

- $Z \neq S$ for some static bulk spacetimes
 (since uses null structure \Rightarrow sensitive to g_{tt})
 \Rightarrow not a viable candidate for holographic EE

- $W = X = Y = S$ for static bulk spacetime
 \Rightarrow a-priori all viable candidates for EE

- $W = Y$ in general
 (motivated via partition fn.: Lorentzian GKP-W relation)

- $X = Y$ (only) if Σ is totally geodesic submanifold

conjecture:

Holographic dual of EE in general time-dependent spacetime is given by area of extremal co-dim.2 bulk surface, or equivalently surface with vanishing null expansions, anchored at ∂A.
Motivation

Time-dependent Multi-region Summary

Obstacle Constructions Tests Applications

Relations between constructions

- $\Sigma \neq S$ for some static bulk spacetimes
 (since uses null structure \Rightarrow sensitive to g_{tt})
 \Rightarrow not a viable candidate for holographic EE

- $\mathcal{W} = \mathcal{X} = \mathcal{Y} = S$ for static bulk spacetime
 \Rightarrow a-priori all viable candidates for EE

- $\mathcal{W} = \mathcal{Y}$ in general
 (motivated via partition fn.: Lorentzian GKP-W relation)

- $\mathcal{X} = \mathcal{Y}$ (only) if Σ is totally geodesic submanifold

conjecture:

Holographic dual of EE in general time-dependent spacetime is given by area of extremal co-dim.2 bulk surface, or equivalently surface with vanishing null expansions, anchored at ∂A.
Motivation

Time-dependent Multi-region Summary

Obstacle Constructions Tests Applications

Relations between constructions

- $\mathcal{Z} \neq S$ for some static bulk spacetimes
 (since uses null structure \Rightarrow sensitive to g_{tt})
 \Rightarrow not a viable candidate for holographic EE

- $\mathcal{W} = \mathcal{X} = \mathcal{Y} = S$ for static bulk spacetime
 \Rightarrow a-priori all viable candidates for EE

- $\mathcal{W} = \mathcal{Y}$ in general
 (motivated via partition fn.: Lorentzian GKP-W relation)

- $\mathcal{X} = \mathcal{Y}$ (only) if Σ is totally geodesic submanifold

conjecture:

Holographic dual of EE in general time-dependent spacetime is given by area of extremal co-dim.2 bulk surface, or equivalently surface with vanishing null expansions, anchored at ∂A.

Veronika Hubeny

Holographic Entanglement Entropy
Relations between constructions

- \(\mathcal{Z} \neq \mathcal{S} \) for some static bulk spacetimes
 (since uses null structure \(\Rightarrow \) sensitive to \(g_{tt} \))
 \(\Rightarrow \) not a viable candidate for holographic EE

- \(\mathcal{W} = \mathcal{X} = \mathcal{Y} = \mathcal{S} \) for static bulk spacetime
 \(\Rightarrow \) a-priori all viable candidates for EE

- \(\mathcal{W} = \mathcal{Y} \) in general
 (motivated via partition fn.: Lorentzian GKP-W relation)

- \(\mathcal{X} = \mathcal{Y} \) (only) if \(\Sigma \) is totally geodesic submanifold

conjecture:

Holographic dual of EE in general time-dependent spacetime is given by area of extremal co-dim.2 bulk surface, or equivalently surface with vanishing null expansions, anchored at \(\partial A \).
Test I: static BTZ

In 2-D CFT (finite T), we can calculate EE explicitly. For non-rotating BTZ: EE agrees w/ expression from \mathcal{W}.

$ds^2 = -(r^2 - r_+^2)\, dt^2 + \frac{dr^2}{(r^2 - r_+^2)} + r^2 \, dx^2$

$S_A = \frac{L_{\mathcal{W}}}{4\, G_N^{(3)}} = \frac{c}{3} \log \left(\frac{\beta}{\pi \varepsilon} \sinh \frac{2\pi h}{\beta} \right)$
Test II: rotating BTZ

CFT density matrix: \(\rho = e^{-\beta H + \beta \Omega P} \)

Trick for calculating EE: \(S_A = -\frac{\partial}{\partial n} \log \text{Tr} \rho_A^n \bigg|_{n=1} \)

\(\text{Tr} \rho_A^n \) obtained from 2-pt.fn. of twist opers w/ \(\Delta_n = \frac{c}{24} (n - \frac{1}{n}) \).

Both CFT and \(L_W/4G_N^{(3)} \) give

\[
S_A = \frac{c}{6} \log \left[\frac{\beta_+ \beta_-}{\pi^2 \varepsilon^2} \sinh \left(\frac{\pi \Delta l}{\beta_+} \right) \sinh \left(\frac{\pi \Delta l}{\beta_-} \right) \right]
\]

BUT \(X \) does not coincide with \(W \):

\(\frac{\partial}{\partial t} \) is Killing but not hypersurface orthogonal

\(\Rightarrow \) while \(\Sigma \) is at const. \(t \), geods. \(W \) are not.

Conclusion: \(W = Y \) gives agreement w/ EE, \(X \) does not.
Test II: rotating BTZ

CFT density matrix: \(\rho = e^{-\beta H + \beta \Omega P} \)

Trick for calculating EE: \(S_A = -\frac{\partial}{\partial n} \log \text{Tr} \rho_A^n \bigg|_{n=1} \)

\(\text{Tr} \rho_A^n \) obtained from 2-pt.fn. of twist opers w/ \(\Delta_n = \frac{c}{24} (n - \frac{1}{n}) \).

Both CFT and \(L\mathcal{W}/4G_N^{(3)} \) give

\[
S_A = \frac{c}{6} \log \left[\frac{\beta_+ \beta_-}{\pi^2 \varepsilon^2} \sinh \left(\frac{\pi \Delta l}{\beta_+} \right) \sinh \left(\frac{\pi \Delta l}{\beta_-} \right) \right]
\]

BUT \(\chi \) does not coincide with \(\mathcal{W} \):
\(\frac{\partial}{\partial t} \) is Killing but not hypersurface orthogonal

\(\Rightarrow \) while \(\Sigma \) is at const. \(t \), geods. \(\mathcal{W} \) are not.

Conclusion: \(\mathcal{W} = \mathcal{Y} \) gives agreement w/ EE, \(\chi \) does not.
Entanglement entropy during collapse

Example of extremal surfaces for collapse (V\textsubscript{Vaidya-AdS$_3$}):
Entanglement entropy increases in time-dependent background (satisfying the null energy condition)
1 Motivation & background

2 Entanglement entropy with time-dependence
 - Candidate covariant constructions
 - Tests & applications

3 Entanglement entropy for disconnected regions
 - Proof for disconnected regions in $1 + 1$ dimensions
 - Conjecture for disconnected regions in $2 + 1$ dimensions

4 Summary and future directions
Entanglement entropy for disconnected regions

Question:

Given EE for any interval A in some state of a 1+1 dim QFT, what is the EE of a disconnected region X composed of two intervals?

Naive guess: $x \equiv S(X) = s_{12} + s_{34}$

Doesn’t work (cf. $p_2 \rightarrow p_3$: in general $s_{12} + s_{34} \neq s_{14}$)
Entanglement entropy for disconnected regions

Answer from CFT:
(cf. Calabrese & Cardy)

\[x = s_{12} + s_{34} + s_{23} + s_{14} - s_{13} - s_{24}. \]

We will prove this using the holographic dual, via:

1. coincident upper & lower bounds on \(x \) from geometry
2. ansatz for \(x \) & consistency of limits \(p_i \to p_j \)

Useful tool:

Strong subadditivity
(cf. Lieb & Ruskai)

Given two overlapping boundary regions \(A \) and \(B \),

\[S(A) + S(B) \geq S(A \cup B) + S(A \cap B) \]

\[S(A) + S(B) \geq S(A \setminus B) + S(B \setminus A) \]
Geometric proof of strong subadditivity

Given two overlapping boundary regions A and B,

consider $S(A) + S(B)$
Given two overlapping boundary regions A and B,

compare with $S(A \cup B) + S(A \cap B)$
Given two overlapping boundary regions A and B,

\[
S(A) + S(B) \geq S(A \cup B) + S(A \cap B)
\]

Geometric proof of strong subadditivity

(cf. Headrick & Takayanagi)
Geometric proof of strong subadditivity

Given two overlapping boundary regions A and B,

$$S(A) + S(B) \geq S(A \cup B) + S(A \cap B)$$

- compare $S(A) + S(B)$ with $S(A \setminus B) + S(B \setminus A)$
Geometric proof of strong subadditivity

Given two overlapping boundary regions \(A\) and \(B\),

\[
S(A) + S(B) \geq S(A \cup B) + S(A \cap B)
\]

\[
S(A) + S(B) \geq S(A \setminus B) + S(B \setminus A)
\]
Argument for two disconnected intervals in $1+1$ dim

Holographic EE as bulk minimal surface implies:

\[
\begin{align*}
S_{14} + S_{23} & \leq S_{13} + S_{24} \\
S_{12} + S_{34} & \leq S_{13} + S_{24} \\
S_{13} & \leq S_{12} + S_{23} \\
S_{13} & \leq S_{14} + S_{34} \\
S_{24} & \leq S_{12} + S_{14} \\
S_{24} & \leq S_{23} + S_{34}
\end{align*}
\]
Argument for two disconnected intervals in $1+1$ dim

Holographic EE as bulk minimal surface implies:

$$s_{14} + s_{23} \leq s_{13} + s_{24}$$
$$s_{12} + s_{34} \leq s_{13} + s_{24}$$

$$s_{ij} \leq s_{ik} + s_{jk}$$
for $i, j, k = 1, 2, 3, 4$

(12 redundant relations reduce to 4)

$$s_{13} \leq s_{12} + s_{23}$$
$$s_{13} \leq s_{14} + s_{34}$$
$$s_{24} \leq s_{12} + s_{14}$$
$$s_{24} \leq s_{23} + s_{34}$$
Argument for two disconnected intervals in $1 + 1$ dim

Holographic EE as bulk minimal surface implies:

\begin{align*}
S_{14} + S_{23} &\leq S_{13} + S_{24} \\
S_{12} + S_{34} &\leq S_{13} + S_{24} \\
S_{13} &\leq S_{12} + S_{23} \\
S_{13} &\leq S_{14} + S_{34} \\
S_{24} &\leq S_{12} + S_{14} \\
S_{24} &\leq S_{23} + S_{34}
\end{align*}
Argument for two disconnected intervals in $1+1$ dim

Strong subadditivity implies:

\[
\begin{align*}
 x & \leq s_{12} + s_{34} \\
 x & \leq s_{14} + s_{23} \\
 s_{12} + s_{14} - s_{13} & \leq x \\
 s_{14} + s_{34} - s_{24} & \leq x \\
 s_{12} + s_{23} - s_{24} & \leq x \\
 s_{23} + s_{34} - s_{13} & \leq x \\
 \text{where } x & \equiv S(X)
\end{align*}
\]
Argument I for two disconnected intervals in $1+1$ dim

Altogether, we have 6 relations among s_{ij} and 6 constraints on x:

\[
\begin{align*}
S_{14} + S_{23} &\leq S_{13} + S_{24} & x &\leq S_{12} + S_{34} \\
S_{12} + S_{34} &\leq S_{13} + S_{24} & x &\leq S_{14} + S_{23} \\
S_{13} &\leq S_{12} + S_{23} & S_{14} + S_{34} - S_{24} &\leq x \\
S_{13} &\leq S_{14} + S_{34} & S_{12} + S_{23} - S_{24} &\leq x \\
S_{24} &\leq S_{12} + S_{14} & S_{23} + S_{34} - S_{13} &\leq x \\
S_{24} &\leq S_{23} + S_{34} & S_{12} + S_{14} - S_{13} &\leq x \\
\end{align*}
\]

Note: \exists natural pairing between equations. Use these to get coincident upper & lower bounds on x, assuming two of the inequalities can be saturated:

\[
S_{12} + S_{23} + S_{34} + S_{14} - S_{13} - S_{24} \leq x \leq S_{12} + S_{23} + S_{34} + S_{14} - S_{13} - S_{24}
\]

$\Rightarrow \quad x = S_{12} + S_{34} + S_{23} + S_{14} - S_{13} - S_{24}$.
Argument 1 for two disconnected intervals in $1 + 1$ dim

Altogether, we have 6 relations among s_{ij} and 6 constraints on x:

\begin{align*}
S_{14} + S_{23} &\leq S_{13} + S_{24} & X &\leq S_{12} + S_{34} \\
S_{12} + S_{34} &\leq S_{13} + S_{24} & X &\leq S_{14} + S_{23} \\
S_{13} &\leq S_{12} + S_{23} & S_{14} + S_{34} - S_{24} &\leq X \\
S_{13} &\leq S_{14} + S_{34} & S_{12} + S_{23} - S_{24} &\leq X \\
S_{24} &\leq S_{12} + S_{14} & S_{23} + S_{34} - S_{13} &\leq X \\
S_{24} &\leq S_{23} + S_{34} & S_{12} + S_{14} - S_{13} &\leq X
\end{align*}

Note: \exists natural pairing between equations.
Use these to get coincident upper & lower bounds on x, assuming two of the inequalities can be saturated:

\begin{align*}
S_{12} + S_{23} + S_{34} + S_{14} - S_{13} - S_{24} &\leq X \leq S_{12} + S_{23} + S_{34} + S_{14} - S_{13} - S_{24} \\
\Rightarrow \quad X &= S_{12} + S_{34} + S_{23} + S_{14} - S_{13} - S_{24}
\end{align*}
Argument II for two disconnected intervals in \(1 + 1\) dim

Assume a linear ansatz:

\[x = c_{12} s_{12} + c_{13} s_{13} + c_{14} s_{14} + c_{23} s_{23} + c_{24} s_{24} + c_{34} s_{34} \]

for some (universal) constants \(c_{ij}\).

Now consider special limits where we know \(x\) explicitly:

- \(p_1 \to p_2 \Rightarrow s_{12} \to 0, \ s_{13} \to s_{23}, \ s_{14} \to s_{24}, \ \text{and} \ x \to s_{34} \)
 \[c_{34} = 1, \ c_{13} + c_{23} = 0, \ c_{14} + c_{24} = 0. \]

- \(p_2 \to p_3 \Rightarrow s_{14} \to 0, \ s_{12} \to s_{13}, \ s_{24} \to s_{34}, \ \text{and} \ x \to s_{14} \)
 \[c_{14} = 1, \ c_{12} + c_{13} = 0, \ c_{24} + c_{34} = 0. \]

- \(p_3 \to p_4 \Rightarrow s_{34} \to 0, \ s_{13} \to s_{14}, \ s_{23} \to s_{24}, \ \text{and} \ x \to s_{12} \)
 \[c_{12} = 1, \ c_{13} + c_{14} = 0, \ c_{23} + c_{24} = 0. \]

\[c_{12} = c_{14} = c_{23} = c_{34} = -c_{13} = -c_{24} = 1 \]

\[\Rightarrow x = s_{12} + s_{34} + s_{23} + s_{14} - s_{13} - s_{24} \ . \]

\[\boxed{\text{QED}} \]
Multiply disconnected intervals in $1+1$ dim

Consider X given by m intervals specified by $n = 2m$ endpoints p_i. We have shown that for $n = 4$,

$$X = s_{12} + s_{34} + s_{23} + s_{14} - s_{13} - s_{24}.$$

We can easily generalise this to

$$X = \sum_{i,j=1}^{n} (-1)^{i+j+1} s_{ij}.$$

In the process we obtain higher-level ‘subadditivity’-type relations, e.g. for 6 endpoints $p_i < p_j < p_k < p_l < p_m < p_n$,

$$s_{ik} + s_{jm} + s_{ln} \geq s_{in} + s_{jk} + s_{lm}.$$
Higher dimensions

Natural question:
Can we generalize this geometric construction for entanglement entropy of disconnected regions to higher dimensions?

Note:
- ¬ QFT methods, but:
 - holographic entanglement entropy as given by area of extremal (minimal) surface holds in all dimensions
 - ⇒ strong subadditivity holds in all dimensions
- For translationally invariant (effectively 1-D) systems, the arguments are identical to the 1 + 1 dim. case

We offer a conjecture for 2 + 1 dim. QFT
Motivation

Time-dependent Multi-region Summary

$1 + 1$ dimensions

$2 + 1$ dimensions

Types of 2-dimensional regions

- cases (a) and (c) are generic, but they naturally define only three bulk surfaces
- case (b) is special intermediate case; but it naturally defines six bulk surfaces

\Rightarrow we can apply previous arguments here:

$$X(b) = s_{12} + s_{34} + s_{23} + s_{14} - s_{13} - s_{24}$$

- however, case (b) can be ‘resolved’ into (a) or (c). This motivates a conjecture for the general cases.
Types of 2-dimensional regions

- cases (a) and (c) are generic,
 but they naturally define only three bulk surfaces
- case (b) is special intermediate case;
 but it naturally defines six bulk surfaces
 \[X(b) = s_{12} + s_{34} + s_{23} + s_{14} - s_{13} - s_{24} \]

 however, case (b) can be ‘resolved’ into (a) or (c).
 This motivates a conjecture for the general cases.
Conjecture for 2-dimensional regions

Since we need at least 6 minimal surfaces in the bulk, let us introduce auxiliary curves C_5 and C_6 to lift (a) and (c) to configurations which admit 6 bulk surfaces:

Conjecture: Since x cannot depend on our choice of the auxiliary curves C_5 and C_6, we minimize over all such configurations:

$$x(a) = \inf_{C_5, C_6} \left\{ s_{12} - s_{1536} + s_{1546} + s_{2536} - s_{2546} + s_{34} \right\}$$

$$x(c) = \inf_{C_5, C_6} \left\{ s_{1526} - s_{1536} + s_{14} + s_{23} - s_{2546} + s_{3546} \right\}$$
Support for the conjecture

\[x(a) = \inf_{C_5, C_6} \{ s_{12} - s_{1536} + s_{1546} + s_{2536} - s_{2546} + s_{34} \} \]

\[x(c) = \inf_{C_5, C_6} \{ s_{1526} - s_{1536} + s_{14} + s_{23} - s_{2546} + s_{3546} \} \]

- for limiting case (b), \(\{ s_{12}, s_{13}, s_{14}, s_{23}, s_{24}, s_{34} \} \) are necessary to specify \(x(b) \); hence \(x(a,c) \) comprise the minimal ansatz

- infimum to satisfy subadditivity relations as \(C_5 \to C_6 \ldots \)

- UV divergence \(\propto C_1 + C_2 + C_3 + C_4 \) as required

- correct limiting behaviour as (a) \(\to \) (b) and (c) \(\to \) (b)

- correct single-region limits
Summary (part I)

- Holographic dual of entanglement entropy (for static bulk ST) = area of \textit{minimal} surface in bulk anchored at \(\partial \mathcal{A} \)

- For time-dependent bulk, use covariant generalization: = area of \textit{extremal} surface in bulk anchored at \(\partial \mathcal{A} \) also given by surface with vanishing null expansions

- Can be used to study EE for time-dependent bulk geometries e.g. EE increases in Vaidya satisfying energy conditions

- Since well-defined in time-dependent system, can analyze quantum systems far from equilibrium, zero-temperature quantum phase transitions, ...\n
\(\leadsto \) study condensed matter systems using AdS/CFT
Holographic dual of entanglement entropy (for static bulk ST) = area of minimal surface in bulk anchored at ∂A

For time-dependent bulk, use covariant generalization: = area of extremal surface in bulk anchored at ∂A also given by surface with vanishing null expansions

Can be used to study EE for time-dependent bulk geometries e.g. EE increases in Vaidya satisfying energy conditions

Since well-defined in time-dependent system, can analyze quantum systems far from equilibrium, zero-temperature quantum phase transitions, ... ~ study condensed matter systems using AdS/CFT
Summary (part I)

- Holographic dual of entanglement entropy (for static bulk ST)
 \[\text{area of minimal surface in bulk anchored at } \partial \mathcal{A} \]
- For time-dependent bulk, use covariant generalization:
 \[\text{area of extremal surface in bulk anchored at } \partial \mathcal{A} \]
 also given by surface with vanishing null expansions
- Can be used to study EE for time-dependent bulk geometries
 e.g. EE increases in Vaidya satisfying energy conditions
- Since well-defined in time-dependent system,
 can analyze quantum systems far from equilibrium, zero-temperature quantum phase transitions, ...
 \[\leadsto \text{study condensed matter systems using AdS/CFT} \]
Holographic dual of entanglement entropy (for static bulk ST)
\[= \text{area of minimal surface in bulk anchored at } \partial \mathcal{A} \]

For time-dependent bulk, use covariant generalization:
\[= \text{area of extremal surface in bulk anchored at } \partial \mathcal{A} \]
also given by surface with vanishing null expansions

Can be used to study EE for time-dependent bulk geometries
e.g. EE increases in Vaidya satisfying energy conditions

Since well-defined in time-dependent system,
can analyze quantum systems far from equilibrium,
zero-temperature quantum phase transitions, ...
\[\rightsquigarrow \text{study condensed matter systems using AdS/CFT} \]
Summary (part II)

- For a static state in $1 + 1$ QFT, we derive the expression for entanglement entropy for disconnected regions:

$$x = \sum_{i,j=1}^{n} (-1)^{i+j+1} s_{ij}.$$

- This reproduces and generalizes the expression obtained by CFT methods.
- Geometrical picture immediately yields higher order generalizations of strong subadditivity.
- We presented conjecture & supporting evidence for EE of disconnected regions in $2 + 1$ QFT (no direct comparison w/ QFT results yet).
Summary (part II)

- For a static state in $1+1$ QFT, we derive the expression for entanglement entropy for disconnected regions:

$$x = \sum_{i,j=1}^{n} (-1)^{i+j+1} s_{ij}.$$

- This reproduces and generalizes the expression obtained by CFT methods.

- Geometrical picture immediately yields higher order generalizations of strong subadditivity.

- We presented conjecture & supporting evidence for EE of disconnected regions in $2+1$ QFT (no direct comparison w/ QFT results yet).
Summary (part II)

- For a static state in $1+1$ QFT, we derive the expression for entanglement entropy for disconnected regions:

$$x = \sum_{i,j=1}^{n} (-1)^{i+j+1} s_{ij}.$$

- This reproduces and generalizes the expression obtained by CFT methods.

- Geometrical picture immediately yields higher order generalizations of strong subadditivity.

- We presented conjecture & supporting evidence for EE of disconnected regions in $2+1$ QFT (no direct comparison w/ QFT results yet)

Veronika Hubeny Holographic Entanglement Entropy
For a static state in $1+1$ QFT, we derive the expression for entanglement entropy for disconnected regions:

$$x = \sum_{i,j=1 \atop j>i}^{n} (-1)^{i+j+1} s_{ij}.$$

This reproduces and generalizes the expression obtained by CFT methods.

Geometrical picture immediately yields higher order generalizations of strong subadditivity.

We presented conjecture & supporting evidence for EE of disconnected regions in $2+1$ QFT (no direct comparison w/ QFT results yet)
Future directions

- General proof for strong subadditivity in time-dependent cases
- Proof of conjecture for disconnected regions in $2 + 1$
- Generalizations to higher dimensions, multiple regions
- Relations between covariant constructions, physical interpretation of \mathcal{X}, \mathcal{Z}
- “Second Law” for entanglement entropy?
- Full bulk metric extraction?
- Study more general asymptopia
Details of Vaidya-AdS

Use to describe collapse to a black hole in AdS; 3-dim metric:

\[ds^2 = -f(r, v) \, dv^2 + 2 \, dv \, dr + r^2 \, dx^2 \]

with \(f(r, v) \equiv r^2 - m(v) \) interpolating between AdS and Schw-AdS.

Energy-momentum tensor \(T_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R \, g_{\mu\nu} + \Lambda \, g_{\mu\nu} \):

\[T_{vv} = \frac{1}{2r} \frac{dm(v)}{dv} \]

Null energy condition holds \(\iff \) mass accretes: \(m'(v) \geq 0 \)
(NEC: \(T_{\mu\nu} k^\mu k^\nu \geq 0 \) for any null vector \(k^\mu \))
Details of coincident bounds argument

• Assume x is given by a unique expression in terms of the s_{ij} which satisfy the geometric constraints (for any state, etc.)

• Now use an extreme case of ‘allowed’ s_{ij}:

$$s_{14} + s_{23} = s_{13} + s_{24} \quad \text{and} \quad s_{13} = s_{12} + s_{23}$$

(one can check these are mutually consistent)

• Then \forall constants a_1 and a_2,

$$s_{14} + s_{34} - s_{24} + (s_{12} + s_{23} - s_{13}) a_1 \leq x \leq$$

$$s_{12} + s_{34} + (s_{14} + s_{23} - s_{13} - s_{24}) a_2$$

• Now set $a_1 = a_2 = 1$.

$$\Rightarrow \quad x = s_{12} + s_{34} + s_{23} + s_{14} - s_{13} - s_{24}$$

• Any choice of saturating pair of eqs will yield the same answer.