Microscopic nuclear reactions starting from the \textit{ab initio} no-core shell model

Sofia Quaglioni and Petr Navratil
N-Division/Nuclear Theory and Modeling
Physical Sciences
Lawrence Livermore National Laboratory

Nuclear Many-Body Approaches for the 21st Century

INT, Seattle, November 6, 2007
Outline of the talk

- Our goal: *ab initio* approach to light-ions reactions
- Introduction to *ab initio* no-core shell model (NCSM)
- How do we tackle reactions? Well, that depends …
 - The Lorentz integral transform (LIT) method
- Application of chiral effective field theory (χEFT) two- (NN) and three-nucleon (NNN) forces to the $^4\text{He} + \gamma \rightarrow X$ reaction
- $^4\text{He} + \gamma \rightarrow X$ reaction with χEFT NN+NNN - Conclusions
- Can we cover a wider range of nuclear reactions?
 - The resonating-group method (RGM)
- Application to n-^4He scattering
 - low-momentum V_{lowk} NN potential (bare interaction)
 - χEFT NN potential (two-body effective interaction)
- Conclusions and Outlook
Our goal: *ab initio* approach to light-ions reactions

non-relativistic QM, point-like nucleons, realistic NN + NNN forces

- **Why low-energy light-ion reactions?**
 - underlying physics of stellar evolution
 - potential energy sources
 - rich “test-ground” for nuclear force models:
 - study NNN force effect in observables not used to fix the interaction parameters

- **Why *ab initio*?**
 - Provide accurate theoretical cross sections for experiments where measurements are controversial, very difficult, impossible
 - provide insight on the role of NNN interactions

- **Why no-core shell model (**NCSM**) and low-energy reactions?**
 - is a successful *ab initio* approach to nuclear structure (**essential ingredient** for low-energy reactions!)
 - covers nuclei beyond the s-shell
 - is the only method capable of employing the new chiral effective field theory (**χEFT**) NN + NNN potential for \(A>4\)
Introduction to *ab initio* NCSM

- The NCSM looks for the eigenstates of the A-body Hamiltonian in the form of expansions over a complete set of harmonic oscillator (HO) basis states
 - A-nucleon HO basis states
 - complete $N_{\text{max}} \hbar \Omega$ model space
 - excitations up to $N_{\text{max}} \hbar \Omega$ above minimum configuration energy

- Why use an HO basis?
 - Flexibility:
 - Jacobi relative coordinates
 - Cartesian single-particle coordinates
 - take advantage of second quantization shell model technique
 - Translational invariance:
 - preserved even using single-particle coordinates Slater-determinant (SD) basis (only with HO basis in a complete $N_{\text{max}} \hbar \Omega$ model space)
 - Downside:
 - Gaussian asymptotic behavior

The convergence to the exact results with increasing N_{max} is accelerated by the use of an effective interaction, which follows a unitary transformation approach.
Effective interaction

- Introduce a Lee-Suzuki unitary transformation X
- $QXHX^{-1}P = 0$ or $PXHX^{-1}Q = 0$
- $H \rightarrow H_{\text{eff}} = PXHX^{-1}P$
- H_{eff} is an A-body operator

- Make an n-body cluster approximation ($2 \leq n \leq A$)
- solve n-body problem
- find H_{eff}^n
- in the A-body problem use

$$V_{\text{eff}} = H_{\text{eff}}^n - h_1 - h_2 \ldots - h_n$$

Two ways of reaching convergence: in a given cluster approximation by increasing the model-space size: for $P \rightarrow 1$, $H_{\text{eff}}^n \rightarrow H$; in a given model space by increasing the cluster size: for $n \rightarrow A$ and fixed P, $H_{\text{eff}}^n \rightarrow H_{\text{eff}}$
How do we tackle reactions? Well, that depends ...

- The NCSM is a **bound-state** technique:
 - is it possible to calculate reaction observables using expansions over **localized** many-body basis states?

\[
R(\omega) = \sum_{\nu} |\langle \Psi_{\nu} | \hat{O} | \Psi_{0} \rangle|^{2} \delta(\nu_{\nu} - E_{\nu} - \omega)
\]

\[
L(\sigma_{R}, \sigma_{I}) = \int d\omega \frac{R(\omega)}{(\omega - \sigma_{R})^{2} + \sigma_{I}^{2}} = \langle \tilde{\Psi} | \tilde{\Psi} \rangle
\]

\[
(H - E_{0} - \sigma_{R} + i\sigma_{I})|\tilde{\Psi}\rangle = \hat{O}|\Psi_{0}\rangle
\]

\[
\sigma_{I} \neq 0 \quad \& \quad \langle \Psi_{0} | \hat{O}^{\dagger} \hat{O} | \Psi_{0} \rangle < \infty
\]

Lorentz integral transform (LIT) method
Efros *et al.*, PLB338(1994)130

The LIT method is a microscopic approach to **perturbation-induced reactions** (also exclusive!). The continuum problem is mapped onto a **bound-state-like** problem.
Application of χEFT NN and NNN forces to 4He + $\gamma \rightarrow X$

- Chiral effective field theory (χEFT) represents our best opportunity to reach a consistent picture of the interaction among nucleons, that is based on the underlying and fundamental theory of QCD.

- χEFT provides a framework for expanding and qualifying the inter-nucleon interactions. At a given order, the interaction contains a set of low-energy constants (LECs), that need to be determined.

- It is a challenge and a necessity to apply χEFT forces to nuclei working in an *ab initio* framework.

- In a recent study the χEFT NN + NNN interactions have been applied to the calculation of various properties from s- to mid-p-shell nuclei using the NCSM
 - preferred choice for the two NNN LECs

- We have applied the same χEFT NN + NNN interactions in the continuum of the four-nucleon system
 - *ab initio* calculation of the 4He total photo-absorption cross section using the LIT method in the NCSM approach

$$\sigma_\gamma(\omega) = 4\pi^2 \frac{e^2}{\hbar c} \omega R(\omega), \quad R(\omega) = \sum_V |\langle \Psi_V | \hat{D}_z | \Psi_0 \rangle |^2 \delta(E_V - E_0 - \omega)$$
χEFT NN + NNN interactions

• A high precision fit to NN data is reached at order N³LO in the chiral expansion
 – we use the N³LO NN potential by Entem and Machleidt

• The strengths of the NNN interaction are determined by the NN couplings, with the exception of two LECs, c_E and c_D

N²LO

- Two-pion exchange: c_1, c_3 and c_4 LECs appear in the chiral NN interaction → determined in the $A = 2$ system

- One-pion-exchange-contact: c_D is a new LEC

- Contact: c_E is a new LEC

Must be determined in $A \geq 3$ system
Ab initio NCSM calculations with χEFT NN + NNN

- Investigation of $A = 3, 4^\text{He}$ and ρ-shell nuclei
- Globally the best results with $c_D \sim -1$
- NNN interaction **essential** to describe the structure of light nuclei
4He photo-disintegration: a history of discrepancies

The $^4\text{He}(\gamma,p)^3\text{H}$ disintegration channel

$^4\text{He}(\gamma,p)^3\text{H}$

MTI-III

CHH (2004)

The $^4\text{He}(\gamma,n)^3\text{He}$ disintegration channel

$^4\text{He}(\gamma,n)^3\text{He}$

MTI-III

AGS

PWA

CHH (2004)

Large discrepancies between different experimental data. Early calculations with semi-realistic NN interactions show better agreement with high-peaked experiment. Can the χEFT NN + NNN interaction explain the low-lying data?
Ab initio NCSM calculation of the 4He ground state

- χEFT NN + NNN interaction: convergence reached with **three-body effective** interaction

4He ground-state convergence

Table:

| E_0 [MeV] | $\langle r^2_p \rangle^{1/2}$ [fm] | $\langle \Psi_0 | \hat{D}^\dagger \hat{D} | \Psi_0 \rangle$ [fm2] |
|------------|---------------------------------|----------------------------------|
| NN | $-25.39(1)$ | $1.515(2)$ | $0.943(1)$ |
| NN + NNN | $-28.60(3)$ | $1.458(2)$ | $0.868(1)$ |
| Expt. | -28.296 | $1.455(7)^*$ | — |
| NN (HH) | -25.38 | 1.516 | — |
| NN (FY) | -25.37 | — | — |

NNN effects:
- more binding
- reduced size
- reduced dipole strength

\[
\langle \Psi_0 | \hat{D}^\dagger \hat{D} | \Psi_0 \rangle \simeq \frac{ZN}{3(A-1) \langle r^2_p \rangle}
\]

*deduced from: $\langle r^2_c \rangle^{1/2} = 1.673(1)$ fm, $
\langle R^2_p \rangle^{1/2} = 0.895(18)$ fm, and $\langle R^2_n \rangle = -0.120(5)$ fm2
NCSM/LIT *ab initio* calculation of $^{4}\text{He} + \gamma \rightarrow X$

- χEFT NN + NNN interaction: convergence reached with *three-body effective* interaction

\[\int_{E_{th}}^{\infty} \frac{\sigma_\gamma(\omega)}{\omega} d\omega = 4\pi^2 \frac{e^2}{\hbar c} \langle \Psi_0 | \hat{D}^\dagger \hat{D} | \Psi_0 \rangle \]
$^4\text{He} + \gamma \rightarrow X$ reaction with χEFT NN+NNN - Conclusions

- Still large discrepancies between different experimental data
 - up to 100% disagreement on the peak-height

- The NNN force induces a suppression of the peak
 - not enough to explain data by Shima et al.
 - Overall better agreement with recent data by Nakayama et al.

- In the peak region χEFT NN+NNN and AV18 + UIX curves are relatively close:
 - weak sensitivity to the details of NNN force
 - expect larger effects in p-shell nuclei

Sizable effect of NNN force. However, differences in the realistic calculations far below the experimental uncertainties: urgency for further experimental activity to clarify the situation.
Can we cover a wider range of nuclear reactions?

- The NCSM is a bound state technique: we need to include
 - clustering and resonant and non resonant continuum

Ansatz: \[\Psi^{(A)} = \sum_v \hat{\mathcal{A}} \left[\psi^{(A-a)}_1 \psi^{(a)}_2 \phi_v(\vec{r}_{A-a,a}) \right] \]

\[= \sum_v \int d\vec{r} \phi_v(\vec{r}) \hat{\mathcal{A}} \Phi^{(A-a,a)}_{v\vec{r}} \]

\[\Phi^{(A-a,a)}_{v\vec{r}} = \psi^{(A-a)}_1 \psi^{(a)}_2 \delta(\vec{r} - \vec{r}_{A-a,a}) \]

\[H \Psi^{(A)} = E \Psi^{(A)} \]

\[\sum_v \int d\vec{r} \left[\mathcal{H}^{(A-a,a)}_{\mu\nu}(\vec{r}', \vec{r}) - E \mathcal{N}^{(A-a,a)}_{\mu\nu}(\vec{r}', \vec{r}) \right] \phi_v(\vec{r}) = 0 \]

Resonating group method (RGM): many-body problem mapped onto various channels of nucleon clusters and their relative motion. We will use NCSM microscopic wave functions for the clusters, and effective interactions derived from realistic forces.
The RGM kernels in the single-nucleon projectile basis

\[\mathcal{N}_{\mu \ell', \nu \ell}^{(A-1,1)} (r', r) = \delta_{\mu \nu} \delta_{\ell' \ell} \frac{\delta(r' - r)}{r' r} \times \mu, \ell' \]

\[\mathcal{H}_{\mu \ell', \nu \ell}^{(A-1,1)} (r', r) = (E_{A-1} + T_{rel}) \mathcal{N}_{\mu \ell', \nu \ell}^{(A-1,1)} (r', r) \]

"direct potential"

\[+ (A-1) \times \]

"exchange potential"

\[- (A-1)(A-2) \times \]
Application to $n^{-4}\text{He}$ scattering

- The $n^{-4}\text{He}$ system represents a convenient “training-ground” for low-energy nuclear scattering calculations
 - the $A = 5$ system does not have a bound state
 - there are two resonances in the p-waves
 - a sharp, low-energy resonance in the $3/2^-$ channel
 - a broader, higher-energy resonance in $1/2^-$ channel
 - the $A = 5$ system presents large effects of the Pauli Exclusion Principle
 - the ^4He is a tightly-bound nucleus
 - single channel scattering is valid up to $E \sim 20$ MeV

- We have performed \textit{ab initio} NCSM/RGM calculation with
 - low-momentum V_{lowk} NN potential (bare interaction)
 - χEFT NN potential (two-body effective interaction)

Describing correctly the low-energy neutron scattering on ^4He represents the first step towards a coherent picture of light-ion reactions
The 4He+n system and the Pauli Exclusion Principle

$^{2}S_{1/2}$ channel shows large effects of the Pauli exclusion principle.

All kernels have been verified using two independent derivations and codes based on the Jacobi and single-particle SD basis, respectively. The latter formalism will allow the application of the NCSM/RGM approach to p-shell nuclei.
The $^4\text{He}+n$ system and the Pauli Exclusion Principle

Interaction kernels: $^2S_{1/2}$ channel

The $^2S_{1/2}$ channel shows large effects of the Pauli exclusion principle

Interaction kernels: $^2P_{3/2}$ channel

$N_{\text{max}} = 14$

$\hbar\Omega = 18\text{MeV}$

All kernels have been verified using two independent derivations and codes based on the Jacobi and single-particle SD basis, respectively. The latter formalism will allow the application of the NCSM/RGM approach to p-shell nuclei.
Solving the RGM equations

- Non-local integro-differential coupled-channel equations:

\[
-\frac{\hbar^2}{2\mu_c} \frac{d}{dr} \left[T_c + V_c(r) - E \right] u_c(r) + \sum_{c'} \int W_{cc'}(r, r') u_{c'}(r') dr' = 0
\]

\[
\varepsilon_c + \frac{\hbar^2}{2\mu_c} \ell_c (\ell_c + 1) + \frac{Z_c Z_{c'} e^2}{r} \left(\varepsilon_c - E \right) N_{cc'}^{E}(r, r') + T_{cc'}^{E}(r, r') + V_{cc'}^{D}(r, r') + V_{cc'}^{E}(r, r')
\]

- Solution by Numerov’s method
 - finite-difference approximations + Simpson integration
 - need ~200 quadrature points for a matching radius \(a = 10 \, \text{fm} \)
 - find simultaneously radial wave function and K-matrix \(\rightarrow \) S-matrix

- Solution by R-matrix method on a Lagrange mesh
 - exact analytical expression for kinetic operator
 - only values of local and non-local potential at mesh points needed
 - need ~20 quadrature points for a matching radius \(a = 10 \, \text{fm} \)
 - calculate R-matrix \(\rightarrow \) S-matrix

Both methods implemented and tested. They yield to identical results for \(n + ^4\text{He} \) phase shifts calculated within the NCM/RGM approach.
NCSM/RGM *ab initio* calculation of $n^{-4}\text{He}$ phase-shifts

- Low-momentum $V_{\text{low}k}$ NN potential: convergence reached with *bare* interaction
$n^{4}\text{He}$ phase-shifts with V_{lowk} NN interaction

- **NCSM/RGM calculation:**
 - low-momentum V_{lowk} NN potential
 - bare interaction
 - $N_{max}=16 \times \hbar \Omega = 18$ MeV

- $^{2}S_{1/2}$ phase-shift in agreement with experiment
 - known to be insensitive to NNN interaction

- $^{2}P_{1/2}$ and $^{2}P_{3/2}$ phase-shifts underestimate data
 - incorrect resonant pole positions
 - insufficient spin-orbit splitting

- The resonances are sensitive to NNN interaction

The first $n^{+4}\text{He}$ phase shifts calculation within the NCSM/RGM approach. Fully ab initio, very promising results. The resonances are sensitive to NNN interaction.
NCSM/RGM \textit{ab initio} calculation of n^{-4}He phase-shifts

- χEFT N^3LO NN potential: convergence reached with \textit{two-body effective} interaction

The first n^{-4}He phase shifts calculation within the NCSM/RGM approach. Fully \textit{ab initio}, very promising results.
Conclusions and Outlook

• We are extending the *ab initio* NCSM to treat low-energy light-ion reactions

• Our recent achievements:
 – $n^-\text{He}$ scattering phase-shifts with realistic NN potentials

• Merging the NCSM and the RGM approaches represents our best opportunity to build a more complete theory to describe
 – structure
 – resonant and non resonant continuum

• Coming next:
 – inclusion of NNN potential terms
 – two-, three-, four-nucleon projectiles

• Ultimate goal:
 – *ab initio* NCSM with continuum ([NCSMC](#))