COMPUTATIONAL CHALLENGES FOR 3-BODY FORCES IN THE SHELL MODEL

Hai Ah Nam
San Diego State University
Computational Science, PhD Student

Collaboration with: Calvin Johnson, SDSU
W. Erich Ormand, LLNL

This work performed under the auspices of the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
The Shell Model

- Typical eigenvalue problem

\[H \Psi_i = E_i \Psi_i \]

- Construct many-body basis states \(|\phi_i\rangle \) so that

\[\Psi_i = \sum_n C_{in} \phi_n \]

- Calculate Hamiltonian matrix elements

\[H_{ij} = \langle \phi_j | H | \phi_i \rangle \]
- Diagonalize to obtain eigenvalues & eigenvectors

\[H = \sum_i \varepsilon_i a_i^+ a_i + \frac{1}{4} \sum_{ijkl} V_{ijkl} a_i^+ a_j^+ a_k a_l \]

\[H = \sum_i \varepsilon_i a_i^+ a_i + \sum_{ijklmn} V_{ijklmn} a_i^+ a_j^+ a_k^+ a_l a_m a_n \]

\[\phi = \frac{1}{\sqrt{A!}} \begin{pmatrix} \phi_1(r_1) & \phi_2(r_1) & \cdots & \phi_A(r_1) \\ \phi_1(r_2) & \phi_2(r_2) & \cdots & \phi_A(r_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(r_A) & \phi_2(r_A) & \cdots & \phi_A(r_A) \end{pmatrix} \]

\[= a_1^+ \ldots a_j^+ a_i^+ |0\rangle \]
Shell Model Codes

- **Oak Ridge (1969)**
 - Coefficients of Fractional parentage

- **Glasgow (1977)**
 - Good Jz (M-scheme)
 - J restored in diagonalization

- **OXBASH (1985)**
 - J-projected M-scheme
 - Smaller matrices

- **RITSSCHIL (1985)**
 - CFP

- **DUSM (1989)**
 - Permutation groups

- **ANTOINE (1991 & 1999)**
 - M-scheme
 - Apply matrix on-the-fly
 - Large dimensions

- **NATHAN (1998)**
 - J-projected similar to ANTOINE
 - "Hybrid" M-scheme-CFP code

- **REDSICK (now)**
 - Based on ANTOINE papers
 - M-scheme
 - Three-body interactions

- **CMICHSM & MFD (now)**
Effects of 3 Body Interactions

- Increase total binding energy
- Increase spin-orbit splitting
 - Improve low-lying excitation spectra
 (correct ground state spin)
- Spin-observables
 - Magnetic moment
 - Gamow-Teller transition strengths

- BETTER AGREEMENT WITH EXPERIMENT!!

| 6Li basis space | $|E_{gs}|(1^+0)$ | Exp | AV8$'$+TM$'$ (99) | AV8$'$ |
|---------------------|----------------|-----|------------------|--------|
| | 31.995 | 31.036 | 28.406 |

(2003)
Investigations of
6,7Li, 6He,
7,8,10Be,
10,11,12B, 12N,
10,11,12,13C

Source: Navratil and Ormand, Phys. Rev. C 68, 034305

<table>
<thead>
<tr>
<th>11B\rightarrow^{11}C basis space</th>
<th>Exp</th>
<th>AV8$'$+TM$'$ (99)</th>
<th>AV8$'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(GT; $\frac{3}{2}^-$ \rightarrow $\frac{1}{2}^-$)</td>
<td>0.345</td>
<td>0.315</td>
<td>0.765</td>
</tr>
<tr>
<td>B(GT; $\frac{3}{2}^-$ \rightarrow $\frac{3}{2}^-$)</td>
<td>0.309</td>
<td>0.591</td>
<td>0.909</td>
</tr>
<tr>
<td>B(GT; $\frac{3}{2}^-$ \rightarrow $\frac{5}{2}^-$)</td>
<td>0.961a</td>
<td>0.517</td>
<td>0.353</td>
</tr>
<tr>
<td>B(GT; $\frac{3}{2}^-$ \rightarrow $\frac{7}{2}^-$)</td>
<td>0.961a</td>
<td>0.741</td>
<td>0.531</td>
</tr>
<tr>
<td>B(GT; $\frac{3}{2}^-$ \rightarrow $\frac{3}{2}^-$)</td>
<td>0.444b</td>
<td>0.625</td>
<td>0.197</td>
</tr>
</tbody>
</table>
Current Investigations

- Higher p-shell, low sd-shell nuclei
 - ^9Be, ^{15}O, ^{16}O, ^{17}O
- 2-body results

The three nucleon interaction plays a critical role in determining the structure of nuclei BUT is computationally challenging

H. Nam

September 26, 2007: Institute for Nuclear Theory
Lanczos (iterative method)

\[
\begin{align*}
\hat{H}v_1 &= \alpha_1 v_1 + \beta_1 v_2 \\
\hat{H}v_2 &= \beta_1 v_1 + \alpha_2 v_2 + \beta_2 v_3 \\
\hat{H}v_3 &= \beta_2 v_2 + \alpha_3 v_3 + \beta_3 v_4 \\
\hat{H}v_4 &= \beta_3 v_3 + \alpha_4 v_4 + \beta_4 v_5
\end{align*}
\]

- Ideal for solving a large sparse matrix
- \(\sim 100-200 \) iterations for the lowest 10 eigenvalues
- Matrix-vector multiplication, vector dot products for \(\alpha \)'s, \(\beta \)'s
- Memory and run-time bottleneck
Why is it so difficult?

- Large dimensions of the Hamiltonian matrix
 - grows dramatically with # of particles & valence space
 \[\text{Dim} = \left(\begin{array}{c} N^p_{\text{sps}} \\ n^p \\ N^n_{\text{sps}} \\ n^n \end{array} \right) \]
e.g. ^{60}Zn (fp – shell)
 \[\binom{20}{10} \binom{20}{10} = 3.4 \times 10^{10} \]

- Large SPARSE matrix
 - Only store non-zero matrix elements

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>space</th>
<th>N_{val}</th>
<th>Z_{val}</th>
<th>Dim basis</th>
<th>Sparsity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{20}Ne</td>
<td>sd</td>
<td>2</td>
<td>2</td>
<td>640</td>
<td>13.0</td>
</tr>
<tr>
<td>^{24}Mg</td>
<td>sd</td>
<td>4</td>
<td>4</td>
<td>28,503</td>
<td>0.74</td>
</tr>
<tr>
<td>^{28}Si</td>
<td>sd</td>
<td>6</td>
<td>6</td>
<td>93,710</td>
<td>0.34</td>
</tr>
<tr>
<td>^{46}V</td>
<td>pf</td>
<td>3</td>
<td>3</td>
<td>121,440</td>
<td>0.36</td>
</tr>
<tr>
<td>^{48}Cr</td>
<td>pf</td>
<td>4</td>
<td>4</td>
<td>1,963,461</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Example

- Dim = 10^8, Sparsity = 0.005%
 - # of m.e. = $10^8 \times 10^8 \times 0.005% = 5 \times 10^{11}$ matrix elements
 - Single precision - real(4)
 - = 2 TB to store (2,000 GB)
 - Dim = 10^9
 - = 200 TB (200,000 GB)
Shared & Distributed Computing Environment

Memory (RAM) ~ 2 - 4 GB/proc
- **Thunder** - Linux: [1024 nodes / 4096 CPUs] 4 CPUs/node w/ 8 GB shared memory (8192 GB total)
- **uP** - IBM: [108 nodes / 864 CPUs] 8 CPUs/node w/ 32 GB shared memory (3456 GB total)

Run-time ~ 12 hours
(DAT time ~ 48 hours)

Parallel File System (Disk)
- Thunder: 338 TB
- uP: 130 TB
- Not all available to 1 user (small fraction)
More difficulties with 3-Body Forces

- Basis dimensions are the same (2 \rightarrow 3 body) but H is less sparse
 - \(H_{ij} = H_{pp} + H_{nn} + H_{pn} \) (2 body)
 - \(H_{ijk} = H_{ppp} + H_{nnn} + H_{ppn} + H_{nnp} \) (3 body)
 - More non-zero matrix elements
 - MORE MEMORY INTENSIVE

- Increase in run-time
 - ^10\text{B}, 4 \hbar \Omega; \quad \text{Basis Dim} = 581,740
 - 2-body has \(\sim 145 \times 10^6 \) non-zero elements
 - \(\sim 1\)- 2 CPU-hr for lowest ten states
 - 3-body has \(\sim 2.2 \times 10^9 \) non-zero elements
 - > 200 CPU-hr

- As if it wasn’t already challenging!!

"One of us is in serious trouble!"
Sparsity Increases with 3 Body Forces

\[^{20}\text{Ne} \]
\[\text{sd-shell} \]
\[640 \text{ basis states} \]

\[^{6}\text{Li} \]
\[2\text{hw} \]
\[800 \text{ basis states} \]
Memory Limitation Solutions

- **Store matrix elements on disk**
 - Requires much disk space, fast i/o.
 - Disk access is ~1000 times slower than RAM access
 - (e.g., OXBASH, Glasgow-Los Alamos, CMICHSM)

- **Store matrix elements in RAM**
 - Limited by # of nodes available.
 - 3,000 processor @ 2GB = 6,000 GB RAM
 - (e.g. MFD)

- **On-the-fly: Recompute the many-body matrix elements**
 - Re-compute on each iteration from the two- (and three-) body matrix elements
 - **Efficient if you only compute non-zero matrix elements – NEED TO KNOW WHICH ARE NON-ZERO!!!**
 - (e.g. ANTOINE, REDSTICK)

Dim = 10^8, Sparsity = 0.05%
= 2 TB (2,000 GB)

Dim = 10^9
= 200 TB (200,000 GB)
Shell Model Code

- On-the-fly construction of Hamiltonian matrix
- Created by W. Erich Ormand & Calvin W. Johnson
- Fortran 90 & MPI
- 2-body version
 - 65+ subroutines
 - 16,000+ lines of code
- 3-body version
- Release spring 2008

Needs Improvements

- Run-time
- Current structure will have memory issues outside of lanczos bottleneck

To reach frontier computations we need optimized code (serial and parallel parts)

Dim > 10^8

Algorithms Load Balancing
REDSTICK Development

- **2004 – 2005**
 - Huh? What’s REDSTICK?

- **2006 – 2007**
 - New “Jump” algorithm applied to various subroutines in 2 body version
 - Improves run-time performance

- **Summer 2007**
 - New 3-body code with similar jump type algorithm

- **In Progress**
 - Analysis of parallelization schemes
 - Implementation of parallelization schemes to 3 body code
 - Improves memory utilization
Good Coding Sense

- **Avoid expensive mathematical operations**

<table>
<thead>
<tr>
<th>Operation</th>
<th>Min Cycles per iteration (L1 Cache)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(i) = y(i)$</td>
<td>1.7</td>
</tr>
<tr>
<td>$x(i) = x(i) + y(i)$</td>
<td>1.7</td>
</tr>
<tr>
<td>$x(i) = x(i) + s*y(i)$</td>
<td>1.7</td>
</tr>
<tr>
<td>$x(i) = 1/y(i)$</td>
<td>15.1</td>
</tr>
<tr>
<td>$x(i) = \sqrt{y(i)}$</td>
<td>18.1</td>
</tr>
</tbody>
</table>

- **Avoid branching within inner loops**

```fortran
do i = 1, N
    do j = 1, N
        y(j,i) = x(j,i) / r(i)
        end do
    end do

do i = 1, N
    oner = 1.0d0 / r(i)
    do j = 1, N
        y(j,i) = x(j,i) * oner
        end do
    end do
```

```fortran
do i = 1, n
    if (r < 1.0e-16) then
        do i = 1, n
            a(i) = 0.0; b(i) = 0.0; c(i) = 0.0
            end do
        else
            a(i) = x(i) / r
            b(i) = y(i) / r
            c(i) = z(i) / r
            end if
        end do
```
Algorithm Improvement: Compare vs. Jump

- Efficiently establish supporting arrays to determine non-zero matrix elements
 - E.g. \(\hat{H}^{pn} = \sum_{ijkl} V_{ijkl}^{pn} \pi_i^{+} \pi_j^{+} \nu_k^{+} \nu_l \)
 - \(H_{pn} = \sum_{ijkl} \left\langle \Phi_f^{p} | \pi_i^{+} \pi_j^{+} | \Phi_i^{p} \right\rangle \left\langle \Phi_f^{n} | \nu_k^{+} \nu_l | \Phi_i^{n} \right\rangle V_{ijkl}^{pn} \)

- “Jump” Algorithm

 \[\Phi_i \] \[\Phi_f \]

 \[\pi_a^{+} \pi_b^{+} \]

 COMPAR\(^E\) initial to final states to see if they’re connected by a one-body operator

 \[\left\langle \Phi_f \right| \]

 Create all possible JUMP states produced from the operators

 Search the final states for the jump state

 \(N^2 \rightarrow N \log(N) \): Increase subroutine performance by a factor of 5-10 (depending on dim.)
Parallelization Analysis: Load Balancing

WORK DISTRIBUTION ANALYSIS

TAU Output

11C, 5hbw

H. Nam
September 26, 2007: Institute for Nuclear Theory
MPI 101

\[H v_1 = v_2 \implies \]

Each CPU gets a copy of \(v_1 \) and \(v_2 \)
ARPACK (PARPACK) – optimized eigensolver (MFD)
- Limited by system resources
- \(10^B \sim 4\) hours w/ 3500 processors

Hybrid Programming Model – MPI & OpenMP
- Decreases minimum memory requirement

Single Instruction, Multiple Data → Multiple Instruction, Multiple Data
What Else?

- Reconsider algorithms for efficient parallelization

 - Breaks up the large dimension vector

\[
H \mathbf{v}_1 = \mathbf{v}_2 \Rightarrow \begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_N
\end{bmatrix} = \begin{bmatrix}
 \mathbf{v}_1 \\
 \mathbf{v}_2 \\
 \vdots \\
 \mathbf{v}_N
\end{bmatrix}
\]

\[v_1, v_2 \sim 10^9, \text{real(4)s} \Rightarrow 8\text{GB}\]

Cannot be stored on 1 node

- Storage and on-the-fly
 - 1 proc starts with on-the-fly & another tries to retrieve m.e. If already calculated throw out else use retrieved values

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
= \begin{bmatrix}
 a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\
 a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\
 a_{31}v_1 + a_{32}v_2 + a_{33}v_3
\end{bmatrix}
= \begin{bmatrix}
 \mathbf{a}_1 \\
 \mathbf{a}_2 \\
 \mathbf{a}_3
\end{bmatrix}
\begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{bmatrix}
\]
The Frontier of NCSM Calculations

- Two Body (m-scheme): \(7 \leq N \leq 11, N_{\text{max}}=10\)
 \[N \geq 12, N_{\text{max}} = 6\]
 - Basis dimensions of \(10^8\) have been achieved
 - \(N_{\text{max}}=8\) requires restructuring of code

- Three Body: Practical limit is \(N_{\text{max}} = 6\) for all p-shell nuclei
 - Thus far results (\(N_{\text{max}}=6\) up to \(^6\text{Li}\) (\(^{12}\text{C}^?\)), \(N_{\text{max}}=4\) up to \(^{13}\text{C}\))
 - Our investigations include \(^{15}\text{O},^{16}\text{O},^{17}\text{O},^{9}\text{Be}\) (4hbw... 6hbw?)

- Four Body: \(N_{\text{max}} = 4\)
 - Not only limited by the number of matrix elements
 - Other limiting factors
 - Dimensions of the supporting vectors (1-body jumps, 2-body jumps, \(H_{\text{ppp}}, H_{\text{nnn}}\))
 - E.g. \(\sim 4\) billion two-body jumps (integer(4)) for \(^{15}\text{O}\), 6hbw = 16 GB
 - Lanczos vector storage
Future of HPC

- **Bigger and better?**
 - IBM Power6
 - If we need ~ 200,000 GB →
 (> 3000 nodes w/ 64 GB each)

- **Bring out the big guns!**
 - BlueGene/L
 - 65536 nodes / 131072 processors
 - 512 MB… yikes! → ~ 33,500 GB total

- **Hope**
 - DARPA, High Productivity Computing
 - Use what you’ve got wisely.
 - Collaborate with Computer Scientists
3-Body Forces are essential for ab initio nuclear structure calculations

Computationally challenging due to memory and run-time performance limitations

On-the-fly diagonalization methods provide greatest scaling potential (or a combination)

Need efficient algorithms (suited for parallel optimization)

Need to analyze workload distribution

Need efficient parallelization schemes

Considerable effort is still needed!!
Acknowledgements

- Calvin W. Johnson, SDSU
- W. Erich Ormand, N-Division, LLNL
- Greg Bronevetsky, CASC, LLNL
- Petr Navratil, N-Division, LLNL
- Department of Energy