After the Shock: Magnetic Fields and Fallback on Newly Formed Neutron Stars

Chris Fryer (LANL/UA) w/ Falk Herwig (Univ. Keele), Aimee Hungerford (LANL), Frank Timmes(LANL/UA) and Patrick Young (LANL/UA)

- After the Supernova Explosion (What we know about Magnetars and Fallback)
- Modeling Fallback - Nucleosynthesis and Neutrinos
- Preparing for the Future
Fallback Invoked Since Early 1970s

- Colgate vs. Arnett (1971). Arnett argued that core-collapse explosions would eject low Y_e material - bad for nucleosynthesis. Colgate responded - this stuff will fall back.
Two explanations for Fallback exist:

- Material pushing against outer layers slows until its velocity falls below the escape velocity (Colgate 1971) - early time fallback

- As the shock decelerates as it moves through the shallow density gradients of the star, its velocity drops below the escape velocity - late time fallback
Modern Simulations of Fallback

- Fallback seen in nearly all modern (energy injection rather than piston-driven explosion models) explosion simulations
- For 1-2 foe explosions, the accretion rate for stars more massive than 15 solar masses is: 0.1-1.5 solar masses in the first few seconds.
- Luminosities in the first few seconds of $10^{52}-10^{53}$ erg/s
- Colgate fallback scenario correct - occurs in both II and Ib/c supernovae.
SN 2005bf

Maeda et al. (2007) found that SN 2005bf’s high peak luminosity predicted a much higher 56Ni yield than predicted by the late-time light curve in the simple explosion model. They studied 2 solutions:

- Fallback removes 56Ni at late times
- There is further engine activity after the explosion (they assume Magnetar activity).
Explosions From Fallback Predicted in late 1990s

- Fryer et al. (1999) found that the super-Eddington radiation flow could drive explosion, preventing further accretion.
- Genevieve et al. (2005) invoke such a model to explain the lack of late-time emission in SN 1987A.
• When Fallback happens, turbulent convection with outflows will also occur.
• This fallback could dominate the neutrino yields and will almost certainly affect estimates of r-process yields.
Neutrinos From Fallback

- Because of outflows, it is not just a simple matter of calculating the amount of fallback.
- Neutrino Luminosities fluctuate with the convection - making a phase that is nearly as messy as the explosion itself.
Outflows Inject Explosion Energy

The kinetic energy of the outflowing matter in the simulation domain quickly rises to a few times 10^{48} erg s$^{-1}$.
A New Nucleosynthetic Path - rapid n + p capture “rp process”

• At Ye ~ 0.5 with appropriate (non-uniform) expansion, proton capture can allow material to overcome waiting points and produce very heavy elements (mass ~ 195): Meyer (2002), Fryer et al. (2006)

• But the devil is in the details - slight differences in the trajectory of the matter lead to very different yields.
Conclusions

- Fallback happens in nearly all supernova explosions. For low mass stars, its effect on the observations may be manageable.
- Fallback accretion is at least as turbulent as the explosion mechanism itself. The neutrinos emitted will depend sensitively on this turbulence (perhaps not a good time to study neutrino cross-sections, but then when is a good time?)
- We can possibly probe this fallback using nucleosynthetic yields and explosion effects.
- Expect much more work on this in the near future!!!