Lessons Learned from Studies of CP Violation in the B-Meson System

Susan Gardner

Department of Physics and Astronomy
University of Kentucky
Lexington, KY 40506

gardner@pa.uky.edu
What is the mechanism of CP violation in Nature? A status report.

- CP Violation in the SM
 - There is one CP-violating parameter in the CKM matrix.
- Why do we think there could be CP violation beyond the SM?

The Case of the Missing Anti-Matter

- How can we test the CKM mechanism of CP violation?
 - Enter “the” Unitarity Triangle.
- How do we study CP violation in the B system?
- What do we now know about the mechanism of CP violation?
- How well can we test the CKM mechanism of CP violation?
The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

The decay $K^{-} \to \mu^{-}\bar{\nu}_{\mu}$ occurs: the quark mass eigenstates mix under the weak interactions. By convention

$$
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix}_{\text{weak}} = V_{\text{CKM}}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}_{\text{mass}};
V_{\text{CKM}} =
\begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
$$

In the Wolfenstein parametrization (1983)

$$
V_{\text{CKM}} =
\begin{pmatrix}
 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\
 -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
 A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + O(\lambda^4)
$$

where $\lambda \equiv |V_{us}| \approx 0.22$ and is thus “small”. A, ρ, η are real.

All CP-violating phenomena are encoded in η.

To test the SM picture of CP violation we must test the relationships it entails.
Studies of b-quark decay allows us to probe

$$V^*_{ub} V_{ud} + V^*_{cb} V_{cd} + V^*_{tb} V_{td} = 0.$$
—a relationship predicated by the unitarity of the CKM matrix.

All terms are $O(\lambda^3)$. Enter “the” unitarity triangle...
Testing the Standard Model of CP Violation

Different CP-violating phenomena exist (or are believed to exist) in the B meson system:

- CP violation in $B - \bar{B}$ mixing

$$
\begin{array}{ccc}
\bar{B}^0 & W & B^0 \\
\bar{d} & & \bar{b}
\end{array}
\begin{array}{ccc}
b & t & d \\
\end{array}
$$

- CP violation in the interference of $B - \bar{B}$ mixing and direct decay

- CP violation in direct decay

Note $|B^0(\tau)\rangle$... a state which is “tagged” as a B^0 meson at proper time $\tau = 0$ has a finite probability of being \bar{B} at proper time τ.
Enter the asymmetric B-factory, to facilitate the study of the time-dependence of CP violation. There are asymmetric B-factories at SLAC and KEK.
Strong Interaction Obfuscation

Want to learn about underlying CKM parameters, but strong-interaction dynamics can confound this goal. Consider

\[A_{\text{direct}} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \]

A : \(M \rightarrow h_1 h_2 \) and \(\bar{A} : \bar{M} \rightarrow \bar{h}_1 \bar{h}_2 \) An interference effect...

\[
A = A_1 + A_2 \equiv A_1 [1 + re^{i\delta} e^{i\phi}]
\]

\[
\bar{A} = \bar{A}_1 + \bar{A}_2 \equiv \bar{A}_1 [1 + re^{i\delta} e^{-i\phi}]
\]

so that \(A_{\text{direct}} = \frac{-2r \sin \delta \sin \phi}{1 + 2r \cos \delta \cos \phi + r^2} \)

\(A_{\text{direct}} \) determines a combination of \(r, \delta, \phi \). Note \(\delta \) strong phase, \(\phi \) weak phase.

Flavor symmetries (SU(2), SU(3)) can be used to relate \(r \) and \(\delta \) of various decays in an approximate way. Precision studies ultimately demand better?
Studying direct CP violation in the B-meson system

Direct CP violation can be studied in a variety of ways:

- **Partial rate asymmetry:**
 \[|A(B \to h_1 h_2)|^2 - |A(\bar{B} \to \bar{h}_1 \bar{h}_2)|^2 \neq 0 \]

- **“ε’ in the B system”:** cf. \(B(t) \to \psi K_S \) and \(B(t) \to \pi^+ \pi^- \) [Wolfenstein, 1984]
 \[
 \Gamma(B^0(t) \to f_{CP}) \propto e^{-\Gamma t} \left[\frac{1+|\lambda_{f_{CP}}|^2}{2} + \frac{1-|\lambda_{f_{CP}}|^2}{2} \cos(\Delta m t) - \text{Im}\lambda_{f_{CP}} \sin(\Delta m t) \right]
 \]
 where \(\lambda_{f_{CP}} \equiv \eta_{f_{CP}}(q/p)(A(\bar{B} \to f_{CP})/A(B \to f_{CP})) \).
 Note \(-\lambda_{\psi K_S} \neq \lambda_{\pi^+ \pi^-}\) implicitly signals direct CP violation.

- **Angular distribution in** \(B \to V_1 V_2 \) [Sinha & Sinha, 1998]

- **Population asymmetry in**
 \[|A(B \to f_{CP})|^2 + |A(\bar{B} \to f_{CP})|^2 \] [SG, 2003; SG & Tandean, 2004]

Direct CP violation in the B-meson system established through the partial-rate asymmetry in the “self-tagged” modes \(B(\bar{B}) \to K^\pm \pi^\mp \).
The failure of mirror symmetry in the Dalitz plot of the untagged decay rate signals the presence of direct CP violation.
Time-Dependent Studies to CP-Eigenstates

\[\Gamma(B^0(t) \to f_{CP}) \propto e^{-\Gamma t} \left[\frac{1 + |\lambda_{f_{CP}}|^2}{2} \cos(\Delta m t) - \text{Im}\lambda_{f_{CP}} \sin(\Delta m t) \right] \]

where \(\lambda_{f_{CP}} \equiv \eta_{f_{CP}} (q/p)(A(\bar{B} \to \bar{f}_{CP})/A(B \to f_{CP})) \).

If the decay amplitude can be characterized by an unique weak phase, the strong dynamics cancels entirely!

Enter the “golden” mode \(B \to \psi K_S \ldots \text{Im}\lambda_{\psi K_S} \) measures \(\sin(2\beta) \).

Note \(\sin(2\beta) = 0.675 \pm 0.026 \) (WA) from \(\psi K_S \) and related modes.
sin(2β) from Penguin Modes

The penguin modes $B \rightarrow \phi K_S$, $B \rightarrow \eta' K_S$, $B \rightarrow f_0 K_S$, etc. also measure $\sin(2\beta)$ in the SM. [Grossman, Worah (1996)]

Many possible modes exist.

N.B. the SM corrections to the $\sin(2\beta)$ measurement are not uniformly small.

However, $S(\phi K_S) - S(\psi K_S) = 0.02 \pm 0.01$.

![Diagram](image-url)
Naive average yields $\sin(2\beta) = 0.52 \pm 0.05$ (HFAG)– a deviation of 2.6σ! (cf. M. Neubert, Moriond-EW Mar 07, 0.50 \pm 0.06)

Discounting differences as statistical fluctuations yields a “global” value of $\sin(2\beta) = 0.647 \pm 0.024$
The possibility of non-SM CP violation is gradually being relegated to a smaller and smaller role. Nevertheless, intriguing discrepancies remain, of which $\sin(2\beta)$ from tree and penguin modes is one.
Testing the CKM paradigm, 2006

Can also compare combined average $\sin(2\beta) = 0.647 \pm 0.024$ with the value deduced from $|V_{ub}|$ and $|V_{td}|$ alone, to yield $\sin(2\beta) = 0.794 \pm 0.045$, for a deviation of 2.9σ. [M. Neubert, Moriond EW Mar 07]

Can be used to set limits on new physics in $B_d - \bar{B}_d$ mixing.
New Physics in $B_d - \bar{B}_d$ Mixing

$$\Delta m_d = \Delta m_d^{\text{SM}} r_d^2 e^{i2\theta_d}$$
Can CP-Violating Observables in the B-Meson System Yield CKM parameters at the $O(1\%)$ Level?

This is less daunting than it may seem.

Consider, e.g., $A_{CP}(t)$ in $B(\bar{B}) \rightarrow J/\psi K_S$. The $b \rightarrow su\bar{u}$ “pollution” is suppressed by $O(\lambda^2)$ and by loop effects.

This yields $\sin(2\beta)$ up to an (estimated) correction of $-(2 \pm 2) \cdot 10^{-4}$, [Boos, Mannel, Reuter, 2004] which can be tested with $B_s \rightarrow J/\psi K_S$ data. [Fleischer, 1999]

Flavor symmetries can also be used to probe CKM angles.

Here we consider the use of isospin symmetry to determine α from $B \rightarrow \pi\pi \,(n\pi)$ decay. Our goal is to assess all isospin-breaking effects.
Trees and Penguins in $b \rightarrow dq\bar{q}$ ($B \rightarrow \pi\pi$, etc.)

- $\Delta l = 3/2$

- $\Delta l = 1/2$

- $\Delta l = 1/2, 3/2$

An assumption of isospin symmetry can separate tree and strong penguin contributions in $B \rightarrow \pi\pi, \rho\pi, \rho\rho$.
The CKM angle α (or γ) can be determined under an assumption of isospin symmetry from the analysis of $B \rightarrow \pi\pi$ [Gronau, London, 1990], $B \rightarrow \rho\pi$ [Snyder, Quinn, 1993], and $B \rightarrow \rho\rho$ modes.

Here we focus on $B \rightarrow \pi\pi$.

$A_{\text{CP}}(t)$ in $B(\bar{B}) \rightarrow \pi^-\pi^+$ decay yields $\sin(2\alpha_{\text{eff}})$.

In the Standard Model $\alpha = \pi - \beta - \gamma$; $\gamma \leftrightarrow$ tree-level decay. Penguins make $\Delta \alpha = \alpha_{\text{eff}} - \alpha \neq 0$.

Under isospin, two pions have $I = 0, 2$ only; $B \rightarrow \pi\pi$ amplitude A_I.

\[
A_{B^0 \rightarrow \pi^+\pi^-} \equiv A_0 + \frac{1}{\sqrt{2}} A_2 , \quad A_{B^0 \rightarrow \pi^0\pi^0} \equiv A_0 - \sqrt{2} A_2 , \quad A_{B^+ \rightarrow \pi^+\pi^0} \equiv \frac{3}{2} A_2 ,
\]

QCD penguins yield $I = 0$ only \implies must separate out A_0/A_2 (\bar{A}_0/\bar{A}_2).

Can do so with $B(B(\bar{B}) \rightarrow \pi^i\pi^j)$ data.
$\pi^0 - \eta, \eta'$ Mixing: Summary

[SG, 2005]

$$\Delta \alpha = \frac{1}{2} (\bar{\phi}' - \phi') + \frac{1}{2} (\bar{\zeta} - \zeta) + \frac{1}{2} \left[(\bar{\phi} - \phi) - (\bar{\phi}' - \phi') \right],$$

Last term vanishes if ξ and $\bar{\xi}$ are real.

Up to $\mathcal{O}(\Lambda_{QCD}/m_b)$:

$$\delta(\Delta \alpha) = 1.2^\circ [\xi] + 1.5^\circ [P_{ew}] + 1.1^\circ [P_{\pi^0 - \eta, \eta'}] + \cdots \approx 4^\circ,$$

$$\sigma_{\alpha}^{IB} = 0.4^\circ [\xi] + 0.3^\circ [P_{ew}] + 0.2^\circ [P_{\pi^0 - \eta, \eta'}] + 1.1^\circ [\text{bound}] + \cdots \approx 2^\circ,$$

There is no central limit theorem for theoretical error.

What has been omitted?!

\implies Long-distance electromagnetic effects.
\[\Delta \alpha = \frac{1}{2} (\phi' - \phi') + \frac{1}{2} (\zeta - \zeta) + \frac{1}{2} [(\phi - \phi) - (\phi' - \phi')] , \]

Last term vanishes if \(\xi \) and \(\bar{\xi} \) are real.

Up to \(\mathcal{O}(\Lambda_{QCD}/m_b) \):

\[\delta(\Delta \alpha) = 1.2^\circ [\xi] + 1.5^\circ [P_{ew}] + 1.1^\circ [P_{\pi^0-\eta,\eta}'] + \cdots \approx 4^\circ , \]

\[\sigma_{\Delta \alpha}^{IB} = 0.4^\circ [\xi] + 0.3^\circ [P_{ew}] + 0.2^\circ [P_{\pi^0-\eta,\eta}'] + 1.1^\circ [\text{bound}] + \cdots \approx 2^\circ , \]

There is no central limit theorem for theoretical error.

What has been omitted?!

\[\xrightarrow{\cdots} \text{Long-distance electromagnetic effects.} \]
$\pi^0 - \eta, \eta'$ Mixing: Summary

\[\Delta \alpha = \frac{1}{2} (\bar{\phi}' - \phi') + \frac{1}{2} (\bar{\zeta} - \zeta) + \frac{1}{2} [(\bar{\phi} - \phi) - (\bar{\phi}' - \phi')] , \]

Last term vanishes if ξ and $\bar{\xi}$ are real.

Up to $O(\Lambda_{QCD} / m_b)$:

\[\delta(\Delta \alpha) = 1.2^\circ [\xi] + 1.5^\circ [P_{\text{ew}}] + 1.1^\circ [P_{\pi^0-\eta,\eta'}] + \cdots \approx 4^\circ , \]

\[\sigma_{\alpha}^{\text{IB}} = 0.4^\circ [\xi] + 0.3^\circ [P_{\text{ew}}] + 0.2^\circ [P_{\pi^0-\eta,\eta'}] + 1.1^\circ [\text{bound}] + \cdots \approx 2^\circ , \]

There is no central limit theorem for theoretical error.

What has been omitted?!

\implies Long-distance electromagnetic effects.
\[\pi^0 - \eta, \eta' \text{ Mixing: Summary} \]

\[\Delta \alpha = \frac{1}{2} (\phi' - \phi) + \frac{1}{2} (\zeta - \zeta) + \frac{1}{2} \left[(\bar{\phi} - \phi) - (\bar{\phi}' - \phi') \right] , \]

Last term vanishes if \(\xi \) and \(\bar{\xi} \) are real.

Up to \(O(\Lambda_{\text{QCD}}/m_b) \):

\[\delta(\Delta \alpha) = 1.2^\circ [\xi] + 1.5^\circ [P_{\text{ew}}] + 1.1^\circ [P_{\pi^0 - \eta, \eta'}] + \cdots \approx 4^\circ , \]

\[\sigma^{\text{IB}}_\alpha = 0.4^\circ [\xi] + 0.3^\circ [P_{\text{ew}}] + 0.2^\circ [P_{\pi^0 - \eta, \eta'}] + 1.1^\circ [\text{bound}] + \cdots \approx 2^\circ , \]

There is no central limit theorem for theoretical error.

What has been omitted?!

\[\Rightarrow \text{Long-distance electromagnetic effects.} \]
Detailed numbers can change as data is updated. Have used CP-averaged branching ratios throughout.

- How does the analysis rely on QCD factorization framework?
 Relies on factorization formula; also follows from SCET in leading power. Scalar penguins do not appear.
 \(\mathcal{O}(\Lambda_{QCD}/m_b) \) effects likely incur 10-20% corrections.
 Important to the extent that \(X_{\eta^{(r)}} \), \(\overline{X}_{\eta^{(r)}} \) are not real.
 \(\implies \) Signalled if \(X_{\eta^{(r)}} \neq \overline{X}_{\eta^{(r)}} \).

- Does the use of the Feldmann-Kroll-Stech framework for \(\eta, \eta' \) matter?
 Have also employed two-angle formalism of Leutwyler. No difference incurred at current empirical precision. [Frère, Escribano, 2005]

- How can electromagnetic corrections be included?
 Recall \(K \to \pi \pi \). Treat in simultaneous chiral and electromagnetic expansion.
Isospin breaking effects will differ for different $n\pi$ modes. Here other corrections can also appear; can mimic the violation of isospin.

- $B \rightarrow \rho\pi$

- Other resonances can populate $B \rightarrow 3\pi$ Dalitz plot. Non-ρ states yield small impact in neutral B modes.

- Inclusion of ρ', ρ''? Analyzed assuming fixed P/T ratio.

- Failure of 2-body unitarity in corners of Dalitz plot?

- Could impact empirical determination of strong phases.

- $\rho^0 - \omega$ mixing

- $\rho^0 - \omega$ mixing can be removed via cuts in $M_{\pi\pi}$.

- $\pi^0 - \eta, \eta'$ mixing

- α can be fixed through B^0, \bar{B}^0 data only. $\delta A_{5/2,2}$ always appears with $A_{3/2,2}$; no error accrues if $\delta A_{5/2,2}$ spawned from $\Delta I = 3/2$ operators in isospin-perfect limit. [Gardner, Meißner, 2002]
Isospin Breaking in \(B \to \rho\pi, B \to \rho\rho \)

B \to \rho\rho decays analyzed in the manner of \(B \to \pi\pi \).

- \(B \to \rho\rho \)
 - Other resonances can populate \(B \to 4\pi \) Dalitz plot.
 - \(\rho^0 - \omega \) mixing
 - \(\rho^0 - \omega \) mixing can be removed via cuts in \(M_{\pi\pi} \).
 - \(I = 1 \) amplitude
 - Emerges even if isospin is unbroken. Follows from finite \(\rho \) width.

[Falk, Ligeti, Nir, Quinn, 2003]

Current empirical assays assume it negligible.
Decays are analyzed under an assumption of isospin symmetry to determine α.
Production Asymmetry in \(e^+ e^- \rightarrow B^+ B^-, B^0 \bar{B}^0 \)

Isospin Symmetry: \(e^+ e^- \rightarrow \Upsilon(4S) \) yields \(B^+ B^- \) and \(B^0 \bar{B}^0 \) pairs equally.

This can be tested. [Babar, hep-ex/0107025]

\[
\frac{\mathcal{B}(B^+ \rightarrow (c\bar{c})K)}{\mathcal{B}(B^0 \rightarrow (c\bar{c})K)} = 1.17 \pm 0.07 \pm 0.04
\]

Assuming isospin and using \(\tau_{B^+}/\tau_{B^0} = 1.062 \pm 0.029 \) yields

\[
R^{+/0} \equiv \frac{\mathcal{B}(\Upsilon(4S) \rightarrow B^+ B^-)}{\mathcal{B}(\Upsilon(4S) \rightarrow B^0 \bar{B}^0)} = 1.10 \pm 0.06 \pm 0.05
\]

“compatible with unity at two standard deviations”

Theory yields \(R^{+/0} - 1 \gtrsim 0.1 \). [Kaiser, Manohar, Mehen, 2002]

Yield of \(B^+ B^- / B^0 \bar{B}^0 \) should also vary across \(\Upsilon(4S) \). [Voloshin, 2003]

Production asymmetry is unlikely to be unity.
The CKM mechanism of CP violation drives the pattern of results found in the B-meson system. Non-SM sources of CP violation are not excluded, but merely relegated to a more minor role. Precision studies may yet reveal new physics!
Backup Slides