The NPDGamnna Experiment

\[A_{\gamma} \approx \hat{s}_n \cdot \hat{k}_{\gamma} \]

- hadronic PV formalism
- experimental setup
- LANSCE \() \) SNS
Simple Level Diagram of \(n-p \) System; \(\bar{n} + p \rightarrow d + \gamma \) is primarily sensitive to the \(\Delta I = 1 \) component of the weak interaction

- Weak interaction mixes in \(P \) waves to the singlet and triplet \(S \)-waves in initial and final states.
- Parity conserving transition is \(M1 \).
- Parity violation arises from mixing in \(P \) states and interference of the \(E1 \) transitions.
- \(A_\gamma \) is coming from \(^3S_1 \rightarrow ^3P_1 \) mixing and interference of \(E1-M1 \) transitions - \(\Delta I = 1 \) channel.
Meson exchange model

- DDH formalism:
 - 6+1 meson-nucleon coupling constants
 - pion channel dominated by neutral current (Z^0)
 - PV effects: interference between strong and weak vertex

\[\frac{e^2}{M_W^2} \frac{g^2}{m_\pi^2} \approx 10^{-7} \]

EFT approach

\[V_{\text{EFT}}^{\text{PV}}(r) = V_{-1,LR}^{\text{PV}}(r) + V_{1,MR}^{\text{PV}}(r) + V_{1,SR}^{\text{PV}}(r) \]

\[V_{-1,LR}^{\text{PV}}(r) = \frac{2}{\Lambda_3^3} \tilde{C}_6 \tau_\times \sigma_+ \cdot y_{\pi^-}(r) \sim h_\pi^1 \]

\[V_{1,MR}^{\text{PV}}(r) = \frac{2}{\Lambda_3^3} \left\{ \tilde{C}_2^{2\pi} \tau_+ \sigma_+ \cdot y_{2\pi}^L(r) + \tilde{C}_6^{2\pi} \tau_\times \sigma_+ \cdot \left[(1 - 1/(3g_A^2)) y_{2\pi}^L(r) - 1/3 y_{2\pi}^H(r) \right] \right\} \sim h_\pi^1 \]

\[V_{\#}^{\text{PV}}(r) = V_{1,SR}^{\text{PV}}(r) = \frac{2}{\Lambda_3^3} \left\{ \left[C_1 + (C_2 + C_4) \tau_+^z + C_3 \tau_+ + C_5 \tau_{zz} \right] \sigma_- \cdot y_{m+}(r) \right\} \sim h_\omega^0 h_\omega^1 h_\rho^1 h_\rho^0 h_\rho^2 \]

\[+ \left[\tilde{C}_1 + (\tilde{C}_2 + \tilde{C}_4) \tau_+^z + \tilde{C}_3 \tau_+ + \tilde{C}_5 \tau_{zz} \right] \sigma_\times \cdot y_{m-}(r) \]

\[+ (C_2 - C_4) \tau_-^z \sigma_+ \cdot y_{m+}(r) + \tilde{C}_6 \tau_\times \sigma_+ \cdot y_{m-}(r) \right\} \sim h_{\rho}^{1'} \sim h_\pi^1 \]

Liu, nucl-th/0609078
Danilov Parameters

PV NN-interaction

\[\Delta L = 1 \quad \Delta J = 0 \quad \Delta (S + I) = 1 \]

Zero range limit:

\[
\begin{align*}
\lambda_t & \propto (C_1 - 3C_3) - (\tilde{C}_1 - 3\tilde{C}_3) \\
\lambda_s^0 & \propto (C_1 + C_3) + (\tilde{C}_1 + \tilde{C}_3) \\
\lambda_s^1 & \propto (C_2 + C_4) + (\tilde{C}_2 + \tilde{C}_4) \\
\lambda_s^2 & \propto -\sqrt{8/3}(C_5 + \tilde{C}_5) \\
\rho_t & \propto \frac{1}{2}(C_2 - C_4) + C_6 .
\end{align*}
\]

\[
\begin{align*}
^3S_1 & \rightarrow ^1P_1, \quad I = 0 \\
^1S_0 & \rightarrow ^3P_0, \quad I = 1 \\
^3S_1 & \rightarrow ^3P_1, \quad I = 1 \rightarrow 0
\end{align*}
\]

Why study hadronic PV?

- probe of atomic, nuclear, and hadronic systems
 - map out coupling constants
 - resolve 18F, 133Cs discrepancy
 - probe nuclear structure effects
 - anapole and qq contributions to PV electron scattering

- probe of QCD in low energy non-perturbative regime
 - confinement, many-body problem
 - sensitive to qq correlations
 - measure QCD modification of qqZ coupling

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
& np A_\gamma & nD A_\gamma & np \phi & n\alpha \phi & pp A_z & p\alpha A_z \\
\hline
f_\pi & -0.11 & 0.92 & -3.12 & -0.97 & & -0.34 \\
\hline
h_\rho^0 & -0.50 & -0.23 & -0.32 & & 0.08 & 0.14 \\
\hline
h_\rho^1 & -0.001 & 0.10 & 0.11 & & 0.08 & 0.05 \\
\hline
h_\omega^0 & 0.05 & -0.25 & & & 0.03 \\
\hline
h_\omega^1 & -0.16 & -0.23 & -0.22 & & 0.07 & 0.06 \\
\hline
\hline
\end{array}
\]

n-capture \hspace{1cm} spin rotation \hspace{1cm} elastic scattering

\[n + p \rightarrow d + \gamma \]

\[A_\gamma = -0.11 f_\pi + -0.001 h_\rho^1 + -0.003 h_\omega^1 \]

Bowman
Why study hadronic PV?

<table>
<thead>
<tr>
<th>Observable</th>
<th>$m_N \rho_t$</th>
<th>$m_N \lambda_t$</th>
<th>$m_N \lambda_s^0$</th>
<th>$m_N \lambda_s^1$</th>
<th>$m_N \lambda_s^2/\sqrt{6}$</th>
<th>Expt. (10^{-7})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A^{pp}_{zz}(k)$</td>
<td>0</td>
<td>0</td>
<td>$4k/m_N$</td>
<td>$4k/m_N$</td>
<td>$4k/m_N$</td>
<td>-0.93 ± 0.21</td>
<td>(52)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.50 ± 0.22</td>
<td>(53)</td>
</tr>
<tr>
<td>$A^{pp}_{z\alpha}$</td>
<td>-1.07</td>
<td>-0.54</td>
<td>-0.72</td>
<td>-0.48</td>
<td>0</td>
<td>-3.3 ± 0.9</td>
<td>(96)</td>
</tr>
<tr>
<td>P_γ</td>
<td>0</td>
<td>0.63</td>
<td>-0.16</td>
<td>0</td>
<td>0.32</td>
<td>1.8 ± 1.8</td>
<td>(63)</td>
</tr>
<tr>
<td>A^d_γ</td>
<td>-0.107</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6 ± 2.1</td>
<td>(65)</td>
</tr>
<tr>
<td>$d\phi^{n\alpha}/dz$</td>
<td>-2.68</td>
<td>1.34</td>
<td>1.8</td>
<td>-1.2</td>
<td>0</td>
<td>8 ± 14</td>
<td>(76)</td>
</tr>
<tr>
<td>A^t_γ</td>
<td>-3.56</td>
<td>-1.39</td>
<td>-0.95</td>
<td>-0.24</td>
<td>1.18</td>
<td>42 ± 38</td>
<td>(97)</td>
</tr>
</tbody>
</table>

$A^{pp}_L(13.6 \text{ MeV}) \approx -0.45 m_N \lambda_s^{pp}$,

$A^{pp}_L(45 \text{ MeV}) \approx -0.78 m_N \lambda_s^{pp}$,

$\frac{d}{dz} \phi^{np}_{n}(\text{th.})|_{\text{rad/m}} \approx 0.30 \tilde{C}_6^\pi + 2.50 m_N \lambda_s^{np} - 0.57 m_N \lambda_t + 1.41 m_N \rho_t$,

$P^{np}_{\gamma}(\text{th.}) \approx -0.16 m_N \lambda_s^{np} + 0.67 m_N \lambda_t \approx A^{d}_{L}(1.32 \text{ keV}+)$,

$A^{np}_{\gamma}(\text{th.}) \approx -0.27 \tilde{C}_6^\pi - 0.093 m_N \rho_t$.

Liu, nucl-th/0609078
Existing measurements

- Light nuclei gamma transitions (circular polarized gammas)
- Nuclear anapole moment (from laser spectroscopy)
- Polarized proton scattering asymmetries

\[\bar{a} = - \int d^3r \ r^2 \vec{j}(r) \]
Existing measurements

Neutron spin rotation

Medium with circular birefringence
Linear polarization circular components
Spin rotation

Graph showing
- \((h_p^0 + 0.6h_{\omega 0})\)
- \((h_{p}^0 + 0.1h_{\omega 0})\)
- \((h_{p}^0 + 0.6h_{\omega 0})\)

DDH "reasonable range"
- \(^{18}\text{F}\)
- \(^{19}\text{F}\)
- \(^{133}\text{Cs}\)
- \(^{205}\text{Tl}\)

p-p and nuclei

Graphs showing:
- Spin rotation
- Neutron spin rotation
- Circular components
Measurement of the Parity - Violating Gamma Asymmetry A_γ in the Capture of Polarized Cold Neutrons by Para-Hydrogen

NPDGamma Collaboration

J.D. Bowman (spokesman), G.S. Mitchell, S. Penttila, A. Salas-Bacci, W.S. Wilburn, V. Yuan
Los Alamos National Laboratory

M.T. Gericke, S. Page, D. Ramsay
Univ. of Manitoba

S. Covrig, M. Dabaghyan, F.W. Hersman
Univ. of New Hampshire

T.E. Chupp, M. Sharma
Univ. of Michigan

C. Crawford, G.L. Greene, R. Mahurin
Univ. of Tennessee

R. Alarcon, L. Barron, S. Balascuta
Arizona State University

S.J. Freedman, B. Lauss
Univ. of California at Berkeley

R.D. Carlini
Thomas Jefferson National Accelerator Facility

Indiana University

T.R. Gentile
National Institute of Standards and Technology

G.L. Jones
Hamilton College

Todd Smith
Univ. of Dayton

T. Ino, Y. Masuda, S. Muto
High Energy Accelerator Research Org. (KEK)

S. Santra
Bhabha Atomic Research Center

P.N. Seo
North Carolina State University

E. Sharapov
Joint Institute of Nuclear Research
Overview of NPDG experiment

\[A_\gamma = -0.11 \ f_\pi \ \frac{1}{4} \ 5 \ \times 10^{-8} \]

\[\frac{d\sigma}{1 + P_n A_\gamma \cos \theta + P_n A_{PC} \sin \theta} \]

\[\delta A = 1 \ \times 10^{-8} \quad \text{for} \quad N \ \frac{1}{4} \ 3 \ \times 10^{16} \ \text{events} \]
Overview of NPDG experiment
Pulsed neutron beam

\[\sim 6 \times 10^8 \text{ cold neutrons per 20 Hz pulse at the end of the 20 m supermirror guide (largest pulsed neutron flux)} \]
Time-of-flight beam profile

Neutron current at the end of a 24.3 m long guide with 150 μA proton current
Time-of-flight beam profile

Beam Monitor Signal

beam monitor preamplifier output (volts) vs. time (ms)
Beam stability
3He neutron polarizer

- $n + ^3$He $\rightarrow ^3$H + p cross section is highly spin-dependent
 \[\sigma_{J=0} = 5333 \text{ b } \lambda/\lambda_0 \]
 \[\sigma_{J=1} \frac{1}{4} 0 \]

- 10 G holding field determines the polarization angle
 \[rG < 1 \text{ mG/cm} \text{ to avoid Stern-Gerlach steering} \]

Steps to polarize neutrons:

1. Optically pump Rb vapor with circular polarized laser
2. Polarize 3He atoms via spin-exchange collisions
3. Polarize 3He nuclei via the hyperfine interaction
4. Polarize neutrons by spin-dependent transmission

$P_3 = 57\%$
Neutron Beam Monitors

- 3He ion chambers
- measure transmission through 3He polarizer

\[T_{\pm} = e^{-nl\sigma(1 \mp P_3)} \quad T_0 = e^{-nl\sigma} \]

\[T \equiv \frac{1}{2}(T_+ + T_-) = T_0 \cosh(nl\sigma P_3) \]

\[P \equiv \frac{(T_+ - T_-)}{(T_+ + T_-)} = \tanh(nl\sigma P_3) \]

\[= \sqrt{1 - T_0^2/T^2} \]

beam monitor measurement
fit to $\tanh(n_3 dl P_3)$

neutron polarization (%)

neutron time of flight at 21 meters (ms)

$n_3 l \sim 4.9$ bar-cm
$P_3 \sim 45\%$
Beam Polarization

For the time window: 10ms to 30ms

Average neutron polarization for the Dec.06 run cycle with Dino
RF Spin Rotator

- **essential to reduce instrumental systematics**
 - spin sequence: $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$ cancels drift to 2nd order
 - danger: must isolate fields from detector
 - false asymmetries: additive & multiplicative
- **works by the same principle as NMR**
 - RF field resonant with Larmor frequency rotates spin
 - time dependent amplitude tuned to all energies
 - compact, no static field gradients
16L liquid para-hydrogen target

- 30 cm long → 1 interaction length
- 99.97% para → 1% depolarization
- pressurized to reduce bubbles
- SAFETY !!

\[\Delta E = 15 \text{ meV} \]
Ortho-Para Conversion Cycle
CsI(Tl) Detector Array

- 4 rings of 12 detectors each
 - 15 x 15 x 15 cm³ each
- VPD’s insensitive to B field
- detection efficiency: 95%
- current-mode operation
 - 5 x 10⁷ gammas/pulse
 - counting statistics limited
 - optimized for asymmetry
Asymmetry Analysis

\[
A_{\text{raw,p}}(t_i) = \frac{\mathcal{Y}_{A_p,\uparrow}(t_i) - \mathcal{Y}_{B_p,\uparrow}(t_i)}{\mathcal{Y}_{A_p,\uparrow}(t_i) + \mathcal{Y}_{B_p,\uparrow}(t_i)}
\]

\[
= \frac{\left(A_{UD}^{j,p}(t_i) + \beta A_{UD,b}^{j,p}(t_i)\right) \langle G_{UD}(t_i) \rangle + \left(A_{LR}^{j,p}(t_i) + \beta A_{LR,b}^{j,p}(t_i)\right) \langle G_{LR}(t_i) \rangle}{\langle A_{\text{raw}}^{j,p} - A_{g}^{p}A_{f}(t_i) - A_{\text{noise}}^{p} \rangle}
\]

\[
= \frac{1}{E(t_i)P_n(t_i)S(t_i)}
\]

\[
\langle G_{UD} \rangle = \langle \cos \theta \rangle
\]
Systematic Uncertainties

- activation of materials, e.g. cryostat windows
- Stern-Gerlach steering in magnetic field gradients
- L-R asymmetries leaking into U-D angular distribution (np elastic, Mott-Schwinger...)
- scattering of circularly polarized gammas from magnetized iron (cave walls, floor...)

→ estimated and expected to be negligible (expt. design)

Statistical and Systematic Errors

- A_Y
- stat. err. (proposal)

Systematics, e.g:

- statistical and systematic errors
- expected gamma asymmetry
- integrated statistical error
- Mott-Schweiger scattering
- parity allowed NPDGamma
- NDT Gamma
- neutron beta decay

Time in ms

slide courtesy Mike Snow
Left-Right Asymmetries

- Parity conserving: \(s_n \cdot k_n \times k_\gamma \)
- Three processes lead to LR-asymmetry
 - P.C. \(n+p \rightarrow d+\gamma \) asymmetry \(0.23 \times 10^{-8} \)
 - Csoto, Gibson, and Payne, PRC 56, 631 (1997)
 - elastic \(n+p \rightarrow n+p \) scattering \(2 \times 10^{-8} \)
 - beam steered by analyzing power of LH\(_2\)
 - eg. \(^{12}\)C used in p,n polarimetry at higher energies
 - P-wave contribution vanishes as \(k^3 \) at low energy
 - Mott-Schwinger scattering \(\sim 10^{-8} \) at 2 MeV
 - interaction of neutron spin with Coulomb field of nucleus
 - electromagnetic \(\square \) spin-orbit interaction
 - analyzing power: \(10^{-7} \) at 45 deg

\[
H^\prime_{ern} = \mu \cdot \vec{B} = g\tilde{s}_n \cdot (\vec{E} \times \vec{v}_n)
= -\frac{1}{m} V(r) \vec{L} \cdot \tilde{s}_n
\]
Detector position scans

\[Y \propto 1 + A^{PV}_\gamma \cos \theta + A^{PC}_\gamma \sin \theta \]

UP-DOWN

\[s_n \cdot k_\gamma \]

LEFT-RIGHT

\[s_n \cdot k_n \times k_\gamma \]

\[Y \propto \frac{1}{r^2} \]

\[Y_{,x} = 0 \]

\[\delta r \]

detector

\[Y_{,y} = 0 \]

target

5 mm resolution \sim 1 \text{ deg}
Engineering Runs

![Graph showing A_0 sin(θ) cos(θ) + A_1 R sin(θ) with data points and error bars for Ring 1 to Ring 4.]

<table>
<thead>
<tr>
<th>Material</th>
<th>runs</th>
<th>A_γ (×10^{-6})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>53</td>
<td>-21 ± 1.6</td>
</tr>
<tr>
<td>Cu</td>
<td>17</td>
<td>-1 ± 3.0</td>
</tr>
<tr>
<td>B_4C</td>
<td>11</td>
<td>-1 ± 2.0</td>
</tr>
<tr>
<td>Al</td>
<td>1057</td>
<td>-0.00 ± 0.30</td>
</tr>
<tr>
<td>In</td>
<td>716</td>
<td>-0.68 ± 0.30</td>
</tr>
<tr>
<td>LEDs</td>
<td>2064</td>
<td>-0.0477 ± 0.0603</td>
</tr>
<tr>
<td>Noise</td>
<td>~</td>
<td>0.001</td>
</tr>
<tr>
<td>Physics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>529</td>
<td>0.53 ± 0.78</td>
</tr>
<tr>
<td>V</td>
<td>2313</td>
<td>0.24 ± 0.45</td>
</tr>
<tr>
<td>Ti</td>
<td>2064</td>
<td>0.41 ± 0.36</td>
</tr>
<tr>
<td>Co</td>
<td>744</td>
<td>0.61 ± 0.31</td>
</tr>
<tr>
<td>Sc</td>
<td>2179</td>
<td>-1.04 ± 0.25</td>
</tr>
</tbody>
</table>

NPDGamma LED Asymmetry, runs 47675-47906 (31 hrs)

NPDGamma Pedestal Asymmetry, runs 47907-48002 (13 hrs)
NPDG Asymmetry (Stat. Error)

NPDGamma PV Asymmetry, runs 41550-44800, 45800-47623 (424 hr)

\[\delta A_y = 2.1 \times 10^{-7} \]
Spallation Neutron Source (SNS)

Oak Ridge National Laboratory, Tennessee
Spallation Neutron Source (SNS)

- Spallation sources: LANL, SNS
- Pulsed -> TOF -> energy
- LH2 moderator: cold neutrons
- Thermal equilibrium in ~30 interactions
FnPB Cold Neutron Beamline

Improvements for SNS:
- curved beamline
- 2 choppers (+ 2 unused)
- new shielding hut
- SM bender polarizer
- new LH₂ vent line
- 60 Hz DAQ system
Timeline

- move NPDG to the SNS to achieve goal of $\delta A_\gamma = 1 \times 10^{-8}$
- possible follow-up experiment: $n + d \rightarrow t + \gamma$
Conclusion

• the NPDG experiment had a successful first phase at LANSCE

• project to determine A_γ to 1×10^{-8} at the SNS
 – possible follow-up experiment: $n + d \rightarrow t + \gamma$

• hadronic parity violation is a unique probe of short-distance nuclear interactions and QCD
 – neutron capture is an important key to mapping the long-range component of the hadronic weak interaction