The transition temperature in QCD

Christian Schmidt

for the RBC–Bielefeld Collaboration

--- results from QCDOC ---

RIKEN BNL
Saumen Datta
Frithjof Karsch
Chulwoo Jung
Peter Petreczky
Takashi Umeda

Columbia
Michael Cheng
Norman Christ
Robert Mawhinney

NBI
Kostya Petrov

Bielefeld
Olaf Kaczmarek
Edwin Laermann
Chuan Miao
Jan van der Heide
On the machines

US/RBRC QCDOC
20,000,000,000,000 ops/sec

BI – apeNEXT
5,000,000,000,000 ops/sec

critical temperature
equation of state
hadron properites in matter

http://quark.phy.bnl.gov/~hotqcd
Outline

- **The Lattice Setup**
 - The p4-action

- **T>0 Simulations**
 - β_c determination and ambiguities
 - Volume dependence

- **T=0 Simulations**
 - Scale setting

- **The transition temperature**
 - Mass and continuum extrapolation
 - Comparison with other groups

Publications

- **Phys.Rev.D74:054507,2006**
 - [hep-lat/0608013]

- **Quark Matter 2006**
 - F. Karsch

- **Lattice 2006**
 - T. Umeda, [hep-lat/0610019]
 - M. Cheng, [hep-lat/0610001]

- **SEWM 2006**
 - T. Umeda and C. Schmidt, [hep-lat/0609032]

- **Panic 2005**
 - F. Karsch, [hep-lat/0601013]
 - C. Schmidt, [hep-lat/0601032]

- **Lattice 2005**
The Lattice Setup

Goal: QCD Thermodynamics with realistic quark masses and controlled extrapolation to the continuum limit

- Remove $O(a^2)$ cutoff errors and improve rotation symmetry by adding irrelevant operators to the standard staggered action

- Improve flavor symmetry inherent to the staggered formulation by smearing the one link term

 RBC-Bielefeld: standard + p4-term + 3 link smearing $(p4fat3)$

 MILC: standard + Naik-term + 3,5,7 link smearing $(asqtad)$

 Wuppertal: standard + exp. 3 link smearing $(stout)$

- Use newly developed RHMC algorithm which has not step-size errors

- Perform simulations with (3-4) different values of light quark masses corresponding to $150 \text{ MeV} < m < 500 \text{ MeV}$ and 2 different lattice spacings $(N_T=4,6)$ to perform chiral and continuum extrapolations

Previous results with p4-action:
2-flavor QCD, $N_T = 4$, $m_\pi = 770$ MeV
The Lattice Setup

The p4-Action (fermionic part): an improved staggered fermion Action

- Remove cutoff-effects and improve rotation symmetry by adding irrelevant operators
- Improve flavor symmetry by smearing the one link term

\[
S_F(N_\tau, N_\sigma) = \sum_{n,\tilde{n}} \sum_\mu \eta(n_\mu) \chi_n \left(\frac{3}{8} \frac{1}{1 + 6\omega} \right) + \omega \sum_{\nu \neq \mu} \left[\begin{array}{c}
\downarrow \\
\uparrow
\end{array} \right] + \frac{1}{48} \sum_{\nu \neq \mu} \left[\begin{array}{c}
\downarrow \\
\uparrow
\end{array} \right] \chi_{n'} + m_q \sum_n \chi_n \chi_n
\]

[Karsch, Heller, Sturm (1999)]
The Lattice Setup

The p4-Action (gluonic part): Symanzik improvement scheme

- Remove cut-off effects of order $O(a^2)$
 (tree-level improvement $O(g^0)$)

\[
S_G(N_\tau, N_\sigma) = \sum_n \sum_{\mu, \nu > \mu} \left(\frac{5}{3} \left[1 - \frac{1}{3} \Re Tr \left[\begin{array}{c}
\end{array} \right] \right] - \frac{1}{6} \left[1 - \frac{1}{6} \Re Tr \left[\begin{array}{c}
\end{array} \right] \right] \right)
\]

[Weisz, Wohlert (1984)]
Properties of the p4-Action: the rotational symmetry

- The free quark propagator is rotational invariant up to order $O(p^4)$
- Rotational symmetry of the heavy quark potential improved

Dispersions relation:

[Karsch, Heller, Sturm (1999)]
Properties of the p4-Action: the rotational symmetry

- The free quark propagator is rotational invariant up to order $O(p^4)$
- Rotational symmetry of the heavy quark potential improved

Dispersions relation:

[Image of a graph showing dispersions relations for different groups: RBC-Bielefeld, MILC, Wuppertal. The graph includes various lines and labels for different cases such as $p_y = p_z = 0$ and $p_x = p_y = p_z = 0$. The reference at the bottom indicates Karsch, Heller, Sturm (1999).]
Properties of the p4-Action: the cut-off effects

- Bulk thermodynamic quantities (pressure, energy density, ...) show drastically reduced cut-off effects

Continuum limit of the pressure for the free lattice gas:
T>0 Simulations

Strategy:

- Simulations at many temperatures (β-values) in a narrow temperature range around T_c

- Apply the Ferrenberg-Swendsen re-weighting to combine information from several independent runs

- Determine the location of the transition from several different susceptibilities: disconnected part of light and strange quark chiral susceptibility, Polyakov-loop and quark number susceptibility, ...

- Runs on different volumes to confirm small finite size effects and little influence on the location of the transition
T>0 Simulations

- Weak volume dependence
- All susceptibilities show consistent peak position:
 - chiral sus.,
 - Polyakov-loop sus.,
 - quartic quark number sus.

High statistics: about 40,000 trajectories for each point, about 200,000 trajectories enter the re-weighting

\[N_T = 4 \]

2.5% error \(\Leftrightarrow 5 \text{ MeV} \)
T>0 Simulations

\[N_T = 6 \]

- Weak volume dependence
- All susceptibilities show consistent peak position:
 - chiral sus.,
 - Polyakov-loop sus.,
 - quartic quark number sus.
- High statistics: up to 60,000 trajectories for each point, about 260,000 trajectories enter the re-weighting

4.0% error \(\Leftrightarrow 8\) MeV
Ambiguities in locating the crossover point

Differences in locating peaks in light (β_l), strange (β_s) and Polyakov loop (β_L) susceptibilities.

Differences in the location of pseudo-critical couplings are taken into account as systematic error.

2.5% ($N_\tau = 4$) or 4% ($N_\tau = 6$) error band ⇔ 5 or 8 MeV.
Strangeness fluctuations

- Strangeness fluctuations provide another observable to locate the crossover point
- Quartic strangeness fluctuations are strongly peaked in the transition region

\[d_4^S = \frac{1}{VT^3} \frac{\partial^4 \ln Z}{\partial (\mu_s/T)^4}\]

\(T_c\) determined from peak in chiral susceptibility

differences of pseudo-critical couplings deduced from peak in strangeness and Polyakov loop fluctuations

\[\beta_c(\chi_L) - \beta_c(\chi_s) = 0.001(2)\]

similar for light quark number fluctuations:

\[\beta_c(\chi_L) - \beta_c(\chi_{u,d}) = 0.005(3)\]
T=0 Simulations

Scale setting from the static quark potential

use r_0 or string tension to set the scale for $T_c = 1/N_\tau a(\beta_c)$

$$V(r) = -\frac{\alpha}{r} + \sigma r, \quad r^2 \frac{dV(r)}{dr} \bigg|_{r=r_0} = 1.65$$

no significant cut-off dependence
when cut-off varies by a factor 4

i.e. from the transition region
on $N_\tau = 4$ lattices to that
on $N_\tau = 16$ lattices !!

we use $r_0 = 0.469(7)$ fm determined from quarkonium spectroscopy

Scale setting from the static quark potential

use r_0 or string tension to set the scale for $T_c = 1/N_\tau a(\beta_c)$

$$V(r) = -\frac{\alpha}{r} + \sigma r, \quad r^2 \frac{dV(r)}{dr} \bigg|_{r=r_0} = 1.65$$

no significant cut-off dependence when cut-off varies by a factor 4

i.e. from the transition region on $N_\tau = 4$ lattices to that on $N_\tau = 16$ lattices !!

- $r_0 \sqrt{\sigma}$ fluctuates about 3% in this interval
- no hint for large cut-off dependence

we use $r_0 = 0.469(7) \text{ fm}$ determined from quarkonium spectroscopy

The transition temperature

Combined chiral and continuum extrapolation

$$(r_0 T_c)_{N_f} = (r_0 T_c)_{\text{cont.}} + b (m_{PS} r_0)^d + c/N_f^2$$

$(d=1.08 (O(4), 2\text{nd ord.}), d=2 (1\text{st ord.}))$

\[T_c r_0 \]

,$\eta=2+1$,

\[m_{ps} r_0 \]

\[\eta_f=4 \text{ (squares, triangles)} \quad 6 \text{ (circles)} \]

\[T_c/\sqrt{\sigma} \]

,$\eta=2+1$,

\[m_{ps} r_0 \]

\[\eta_f=4 \text{ (squares, triangles)} \quad 6 \text{ (circles)} \]

$\Rightarrow \quad r_0 T_c = 0.456(7)^{+3}_{-1}$, $T_c/\sqrt{\sigma} = 0.408(7)^{+3}_{-1}$ at phys. point

$\Rightarrow \quad T_c = 192(7)(4) \text{ MeV}$

(1st error: stat. error on β_c and r_0; 2nd error: N_f^{-2} extrapolation)
The transition temperature

Preliminary results on the energy density

The Tc determination is consistent with the crossover region of the energy density

Note: T-scale is independent from Tc determination

The band marks $T=192 \pm 11$ MeV

RBC-Bielefeld preliminary and MILC (C. Bernard et al., hep-lat/0610017)
The transition temperature

Comparison with other groups

- RBC-Bielefeld (p4fat3) vs. MILC (asqtad) and Wuppertal (stout)

 - asqtad results agree with p4fat3 results within statistical errors

 - stout results for Nt=4 and Nt=6 are about 15% lower,
 Tc from Nt=8,10 covers 151-176 MeV

MILC data for $T_c r_1$ rescaled with $r_0 / r_1 = 1.4795$
The transition temperature

Comparison with other groups

- RBC-Bielefeld (p4fat3) vs. Wuppertal (stout)

- stout results for Nt=4,6 are about 15% lower, but show similar cut-off dependence

- stout results from different observables for Nt=8,10 are no longer consistent with each other

The transition temperature

Comparison with other groups

- RBC-Bielefeld (p4fat3) vs. Wuppertal (stout)

- stout results for Nt=4,6 are about 15% lower, but show similar cut-off dependence

- stout results from different observables for Nt=8,10 are no longer consistent with each other

\[\chi_m = m_{u,d}^2 \frac{\partial^2}{\partial m_{u,d}^2} (f(T) - f(0)) \]

Peak position of the dimensionless quantity \(\chi_m / T^4 \) was used

Is the peak position affected by the renormalization procedure?

overall scale set with \(r_0 = 0.469 \text{ fm} \)
The transition temperature

Comparison with other groups

- RBC-Bielefeld (p4fat3) vs. Wuppertal (stout)

When plotting

\[\chi_{\psi \psi} r^2_0 = r^2_0 \frac{\partial^2}{\partial m^2_{u,d}} (f(T) - f(0)) \]

Tc from different observables seem to agree for the stout data*

*we thank S. Katz for providing us with the Wuppertal data
Conclusions

- We studied the thermodynamics of QCD with realistic quark masses and performed a continuum extrapolation based on 2 lattice spacings (Nt=4,6)

- Using an improved staggered action we find a consistent crossover temperature from several observables

- At the physical point of 2+1 flavor QCD we find a crossover temperature of

 \[T_c = 192 (7) (4) \text{ MeV} \]

- An analysis of the energy density shows a rapid crossover at this temperature

- This calculation is consistent with an analysis based on the asqtad action performed by MILC (some details still have to be resolved)

- Results from the Wuppertal group yield a critical temperature which is at least 15% lower.

- A calculation with Nt=8 is important to confirm our continuum extrapolation