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χPT

• Chiral perturbation theory (χPT) provides a nice framework
for thinking about the fourth root

• Much simpler than lattice QCD itself
• Low energy constants (LECs) are taken as unknowns

(“mod them out” from the corresponding QCD theory)
• Most info in χPT is in the order by order chiral expansion

(perturbative)
• But gives nonperturbative info about QCD
• Lowest energy, longest distance sector: any problems

from rooting (unitarity violations, nonlocality) ought to
show up here

C. Bernard, INT, 3/20/06 – p.3



SχPT

• Lee & Sharpe found the LO chiral theory for a single
unrooted staggered field including a2 taste violations
nomenclature: 1 staggered field = 1 flavor (4 tastes if unrooted; 1 taste if
rooted)

• Aubin & C.B.:
• Generalized Lee-Sharpe to many flavors
• Proposed taking into account fourth root by locating

sea-quark loops and multiplying each by 1
4

• Sea-quark loops found by quark-flow approach [Sharpe]
• Replica trick is equivalent, but systematic and algebraic

— better here
• Staggered chiral perturbation theory (SχPT) is defined

as this chiral theory for staggered quarks, including
discretization errors and the above procedure for taking
4
√

Det into account

• Question: is SχPT the correct chiral theory? C. Bernard, INT, 3/20/06 – p.4



Overview

• We know (trivially) how fourth root works when we have 4

degenerate flavors:
(

4
√

Det
)4

= Det

• Get 1-flavor, unrooted theory
• Local lattice action & known chiral theory [Lee & Sharpe]

• To get non-degenerate 4-flavor theory, expand around
degenerate point

• Need non-trivial assumptions about mass dependence
(analyticity, absence of phase transition)

• To get theory with 3 flavors, decouple a quark (“charm”)
• Need another assumption about how decoupling works

• I claim assumptions are “plausible.”
• Plausibility is in eye of beholder!
• Assumptions at least not obviously wrong
• These assumptions are necessary for SχPT to work

C. Bernard, INT, 3/20/06 – p.5



Replica trick

• Systematic & algebraic way to find sea-quark loops and
multiply by 1/4

• Introduced for partially quenched theory by Damgaard and
Splittorff

• First used for SχPT by Aubin & CB, Lattice ’03

• Replicate the sea-quark flavors, replacing each field by nR

identical copies (nR = positive integer)

• Calculate order by order in corresponding (unrooted) chiral
theory

• Take nR → 1/4 at end
• Dependence on nR is polynomial at any finite order in

SχPT, so nR → 1/4 is well-defined
• Treat LECs as free parameters for each nR — LECs are

taken independent of nR in this procedure

C. Bernard, INT, 3/20/06 – p.6



Replica trick

• Difficult to give meaning to replica trick at QCD level:
• Beyond weak-coupling perturbation theory, dependence

on nR almost certainly non-polynomial
• Analytic continuation from integers not unique
• ∃ ideas by Shamir for defining a version of replica trick

for QCD, but not used here

• In SχPT replica trick also only meaningful order by order
• Will assume no phase change as we move away from

degenerate point, where phase of chiral theory is known

C. Bernard, INT, 3/20/06 – p.7



(nF , nT , nR) notation

• (nF , nT , nR)LQCD is generating functional for lattice QCD
theory with:
• nF flavors
• nT tastes
• nR replicas of each flavor

• (nF , nT , nR)χ is corresponding generating functional for
chiral theory

• Omit nR if it is trivially equal to 1 (because replica trick not
relevant)

• Sources for generating functionals to be discussed later

C. Bernard, INT, 3/20/06 – p.8



(nF , nT , nR) notation

Relevant theories:

• (1, 4)LQCD and (1, 4)χ

• Single unrooted staggered field
• (1, 4)χ is SχPT of Lee & Sharpe.
• No replica trick necessary

• (nF , 4, nR)LQCD and (nF , 4, nR)χ

• nF staggered fields,
• nR indicated explicitly ⇒ integer only
• (nF , 4, nR)χ is SχPT of Aubin & CB for nR ·nF sea-quark

flavors (still no rooting)

C. Bernard, INT, 3/20/06 – p.9



(nF , nT , nR) notation

Relevant theories (continued):

• (nF , “1”)LQCD and (nF , “1”)χ

• nF staggered fields with 4
√

Det taken
• Quotes on “1” taste ⇒ don’t assume fourth root works
• (nF , “1”)χ is by definition the chiral theory generated by

(nF , “1”)LQCD

• Want to find (nF , “1”)χ unambiguously

• (nF , 4, 1
4)χ

• Chiral theory (nF , 4, nR)χ with the replica trick nR → 1/4

• Defines SχPT for rooted theory

• Does (nF , “1”)χ = (nF , 4, 1
4)χ ?

• Avoid “(nF , 4, 1
4)LQCD” because replica trick ambiguous

at QCD level C. Bernard, INT, 3/20/06 – p.10



Remarks

• Chiral theories (nF , 4, nR)χ are key objects

• (nF , 4, nR)LQCD , in particular (4, 4, nR)LQCD , introduced for
convenience
• Used formally; help keep track of nR factors relating

valence- to sea-quark matrix elements
• Almost certainly can be eliminated at the expense of less

intuitive argument at the chiral level
• Unnecessary that the standard, broken realization of

chiral symmetry assumed in (4, 4, nR)χ actually occurs
in (4, 4, nR)LQCD

• Unpleasant fact that asymptotic freedom & spontaneous
chiral symmetry breaking(?) is lost for nR > 1 in
(4, 4, nR)LQCD is irrelevant

• Worried? — just increase nc (number of colors) [Heller]

C. Bernard, INT, 3/20/06 – p.11



nF =4 basics

• Want to show:
(4, “1”)χ

.
= (4, 4, 1

4)χ

• Use “ .
=” to compare two chiral theories: same functions

of the LECs
• True equality only if adjust LECs to be the same

• Start with degenerate 4-flavor theory: M = m̄I, where I is
identity matrix in flavor space:

(4, “1”)LQCD

∣

∣

∣

M=m̄I
= (1, 4)LQCD

∣

∣

∣

m̄

(4, “1”)χ

∣

∣

∣

M=m̄I

.
= (1, 4)χ

∣

∣

∣

m̄

.
= (4, 4, 1

4)χ

∣

∣

∣

M=m̄I

• Last equivalence manifest order by order in SχPT
• Taking 4nR degenerate flavors and then putting nR = 1/4

⇐⇒ one-flavor theory C. Bernard, INT, 3/20/06 – p.12



nF =4: expansion around degenerate point

• To move away from degenerate limit, add taste-singlet
scalar sources for sea-quark fields:

L(4,“1”) = · · · + m̄ Ψ̄i(x)Ψi(x) + Ψ̄i(x) sij(x) Ψj(x) + . . .

L(4,4,nR) = · · · + m̄Ψ̄r
i (x)Ψr

i (x) + Ψ̄r
i (x) sij(x) Ψr

j(x) + . . .

[sum over i, j (flavor indices) and r (replica index)]

• When s 6= 0, we don’t yet know that (4, 4, 1
4)χ is right chiral

theory

• Define V [s] as amount of mismatch:

(4, “1”; s)χ
.
= (4, 4, 1

4 ; s)χ + V [s]

• V [s] = 0 when s=0 or whenever flavor symmetry is exact

C. Bernard, INT, 3/20/06 – p.13



nF =4: expansion around degenerate point

• Example of possible term in V [s]:

V1 = m̄2

∫

d4x d4y

(

1

� + M2

)

x,y

(

Tr [s(x)s(y)]−1
4Tr [s(x)] Tr [s(y)]

)

with 1/M a distance scale that might not vanish when a → 0

• Claim:

∏

n

∂

∂sinjn(xn)
(4, “1”; s)χ

∣

∣

∣

s=0

.
=

∏

n

∂

∂sinjn(xn)
(4, 4, 1

4 ; s)χ

∣

∣

∣

s=0

⇒ ∏

n

(

∂

∂sinjn(xn)
V [s]

)

∣

∣

∣

∣

∣

s=0

= 0

• Prove by relating sea Green’s functions to valence Green’s
functions in partially quenched theory

• Then can keep s = 0, where equivalence is known
C. Bernard, INT, 3/20/06 – p.14



nF =4: partial quenching argument

• Add nV staggered valence fields with sources σαβ to all
LQCD theories

cL = · · · + m̄q̄α(x)qα(x) + q̄α(x) σαβ(x) qβ(x) + . . .

• nV ghost fields also added, but not coupled to σαβ : cancel
valence Det when σ=0

(4, “1”; s=0, σ)LQCD = (1, 4; s=0, σ)LQCD

⇒ (4, “1”; s=0, σ)χ
.
= (1, 4; s=0, σ)χ

.
= (4, 4, 1

4 ; s=0, σ)χ

• Last equivalence again manifest order by order in SχPT
• Should be safe from any subtlety of type discussed by

Golterman, Sharpe & Singleton
• e.g. non-trivial saddle point for ghost mesons

C. Bernard, INT, 3/20/06 – p.15



nF =4: partial quenching argument

• Relate derivatives w.r.t. s to derivatives w.r.t. σ

• Derivatives w.r.t. s in rooted theory bring down factors of 1/4
from

4

√

Det(D + m̄ + s) = exp 1
4tr ln(D + m̄ + s)

• Different terms (≡ different contractions) associated with
different powers of 1/4

• power of 1/4 is just the number of quark loops implied by
corresponding contractions

• Derivatives w.r.t. s in replicated theory produce
corresponding powers of nR from sea-quark counting

• But with arbitrary nV , can always adjust valence flavor
indices on σ derivatives so only one contraction possible

C. Bernard, INT, 3/20/06 – p.16



nF =4: partial quenching argument

• Examples (i 6= j, α 6= β, no sums):

∂

∂sij(x)

∂

∂sji(y)
(4, “1”; s, σ=0)LQCD

∣

∣

∣

s=0
=

1

4
〈tr

(

Gj(x, y)Gi(y, x)
)

〉

=
1

4

∂

∂σαβ(x)

∂

∂σβα(y)
(4, “1”; s=0, σ)LQCD

∣

∣

∣

σ=0

∂

∂sii(x)

∂

∂sii(x)
(4, “1”; s, σ=0)LQCD

∣

∣

∣

s=0
=

=
1

4
〈tr

(

Gi(x, y)Gi(y, x)
)

〉 +

(

1

4

)2

〈tr
(

Gi(x, x)
)

tr
(

Gi(y, y)
)

〉

=

[

1

4

∂

∂σαβ(x)

∂

∂σβα(y)
+

(

1

4

)2 ∂

∂σαα(x)

∂

∂σββ(y)

]

(4, “1”; s=0, σ)LQCD

∣

∣

∣

σ=0

• For (4, 4, nR) theory, just replace 1/4 → nR C. Bernard, INT, 3/20/06 – p.17



nF =4: partial quenching argument

• Can therefore write:
∏

n

∂

∂sinjn(xn)
(4, “1”; s, σ=0)LQCD

∣

∣

∣

s=0
=

=
∑

C

(

1
4

)LC ∏

n

∂

∂σαC
n βC

n (xn)
(4, “1”; s=0, σ)LQCD

∣

∣

∣

σ=0

∏

n

∂

∂sinjn(xn)
(4, 4, nR; s, σ=0)LQCD

∣

∣

∣

s=0
=

=
∑

C

(nR)LC
∏

n

∂

∂σαC
n βC

n (xn)
(4, 4, nR; s=0, σ)LQCD

∣

∣

∣

σ=0

• C labels a contraction with LC valence quark loops

• Valence indices αC
n , βC

n adjusted so only one contraction

• Same arrangements of valence flavor indices & powers LC

work in both cases
C. Bernard, INT, 3/20/06 – p.18



nF =4: partial quenching argument

• Pass to corresponding chiral theories:

∏

n

∂

∂sinjn(xn)
(4, “1”; s, σ=0)χ

∣

∣

∣

s=0
=

=
∑

C

(

1
4

)LC ∏

n

∂

∂σαC
n βC

n (xn)
(4, “1”; s=0, σ)χ

∣

∣

∣

σ=0

∏

n

∂

∂sinjn(xn)
(4, 4, nR; s, σ=0)χ

∣

∣

∣

s=0
=

=
∑

C

(nR)LC
∏

n

∂

∂σαC
n βC

n (xn)
(4, 4, nR; s=0, σ)χ

∣

∣

∣

σ=0

• At any finite order in chiral perturbation theory both sides of
last eqn are polynomial in nR. Can take nR → 1/4

C. Bernard, INT, 3/20/06 – p.19



nF =4: partial quenching argument

• After nR → 1/4 in second eqn:
∏

n

∂

∂sinjn(xn)
(4, “1”; s, σ=0)χ

∣

∣

∣

s=0
=

=
∑

C

(

1
4

)LC ∏

n

∂

∂σαC
n βC

n (xn)
(4, “1”; s=0, σ)χ

∣

∣

∣

σ=0

∏

n

∂

∂sinjn(xn)
(4, 4, 1

4 ; s, σ=0)χ

∣

∣

∣

s=0
=

=
∑

C

(

1
4

)LC ∏

n

∂

∂σαC
n βC

n (xn)
(4, 4, 1

4 ; s=0, σ)χ

∣

∣

∣

σ=0

• Right sides equal since (4, “1”; s=0, σ)χ
.
= (4, 4, 1

4 ; s=0, σ)χ

• So left sides equal, which is what we wanted to show

C. Bernard, INT, 3/20/06 – p.20



nF =4: analyticity assumptions

• So all derivatives of V [s] vanish at s = 0

• If V [s] analytic in s — up to possible isolated singularities —
it vanishes everywhere

• Strong assumption; is it obviously too strong?

• “Don’t expect convergent expansions in QFT”
• Factorial growth of large orders in perturbation theory:

expansion at best asymptotic
• But here every order is zero!

• How could analyticity go wrong?
• Line of singularities, domain boundary

• Ground state for (4, “1”)χ changes discontinuously

from state assumed by (4, 4, 1
4)χ

• Inside the range of m & a studied by MILC, such a
singularity would have probably been detected

• No evidence outside MILC range, though C. Bernard, INT, 3/20/06 – p.21



nF =4: analyticity assumptions

• How could analyticity go wrong? (continued)

• Essential singularity at s = 0

• Term like exp(−1/V 2
1 ) is logically possible

• Best I can say right now is there’s no reason to expect
it (no obvious IR problem; expanding around massive
theory)

• Speculations later

• NB: Not assuming that (4, “1”)χ and (4, 4, 1
4)χ are

separately analytic, only that difference is

• If V [s] not analytic, then SχPT is wrong

C. Bernard, INT, 3/20/06 – p.22



nF =3: decoupling

• Try to get to nF =3 by taking one mass (“charm”) large

• Take mc large as possible w/o leaving region where SχPT
applies

• Nominally, say mc ∼ 2mphys
s

• Take other masses small for clean separation (ms�mphys
s )

• Integrate out mc from (4, 4, 1
4)χ

• Should get (3, 4, 1
4)χ

• Since perturbative, there is little doubt here
• Explicit check is planned (CB & X. Du)

• So charm has decoupled from low energy physics when
mc ∼ 2mphys

s

• Assume it remains decoupled from low energy physics as
mc increases to � 1/a

C. Bernard, INT, 3/20/06 – p.23



nF =3: decoupling

• When mc � 1/a, it is much larger than all eigenvalues of D

• 4

√

Det(D + mc) independent of gauge field

• charm decouples from (4, “1”)LQCD, leaving
(3, “1”)LQCD

⇒ (3, “1”)χ
.
= (3, 4, 1

4)χ

• If true for small u, d, s masses, then analyticity assumption
implies still true for physical ones

• Can repeat to argue (2, “1”)χ
.
= (2, 4, 1

4)χ and

(1, “1”)χ
.
= (1, 4, 1

4)χ

• Decoupling assumption not only sufficient but also
necessary for nF = 3 SχPT:

• Any new physical effects entering for 2mphys
s <∼mc <∼ 1/a

automatically violate chiral theory C. Bernard, INT, 3/20/06 – p.24



One-flavor paradox

• Theory with 1 flavor should have only heavy pseudoscalar,
η′, no light pseudo-Goldstone bosons

• SχPT for 1 rooted-staggered flavor has 16 pseudoscalars
(“pions”); only the taste-singlet is heavy

• Different weightings (factors of 1/4) in rooted case
compared to unrooted case, but otherwise similar — all
pions contribute at a 6= 0

• For consistency, light pions must decouple from pure-glue
correlation functions when a → 0

• Work by CB, DeTar, Fu, Prelovsek; more details in DeTar’s
talk tomorrow

C. Bernard, INT, 3/20/06 – p.25



One-flavor paradox

• Mock up the kind of pure-glue correlation function that can
persist in continuum limit: add taste-singlet scalar source to
rooted one-flavor theory:

Lsource = s(z)Ψ̄(z)Ψ(z)

• To show factors resulting from rooting, take the Rth power of
the determinant; set R = 1/4 at end

(1, “1”)LQCD =

∫

DA exp{−SG(A) + R tr (ln (D + m + s))}
∫

DA exp{−SG(A) + R tr (ln (D + m))}

• Look at connected part of

G(x−y) =

(

∂

∂s(x)

∂

∂s(y)
(1, “1”)LQCD

)

s=0

[“connected” ⇒ subtract 〈Ψ̄Ψ〉2]
C. Bernard, INT, 3/20/06 – p.26



One-flavor paradox

• Calculate G(x-y) for large |x − y| in LO SχPT

• First rewrite in terms of valence Green’s functions

G(x−y) = R

(

∂

∂σαβ(x)

∂

∂σβα(y)
(1, “1”)LQCD

)

σ=0

+ R2

(

∂

∂σαα(x)

∂

∂σββ(y)
(1, “1”)LQCD

)

σ=0

C. Bernard, INT, 3/20/06 – p.27



One-flavor paradox

• Calculate G(x-y) for large |x − y| in LO SχPT

• First rewrite in terms of valence Green’s functions

G(x−y) = R

(

∂

∂σαβ(x)

∂

∂σβα(y)
(1, “1”)LQCD

)

σ=0

+ R2

(

∂

∂σαα(x)

∂

∂σββ(y)
(1, “1”)LQCD

)

σ=0

α

β β βα

α α β

R term 2R  term

C. Bernard, INT, 3/20/06 – p.27



One-flavor paradox: diagrams

αα

ββ

QCD valence contraction
(term proportional to R)

C. Bernard, INT, 3/20/06 – p.28



One-flavor paradox: diagrams

αα

ββ
⇒











β β

α

α

β

β

α

α α

β β

α

j

QCD valence contraction chiral quark flow (note hairpins)
(term proportional to R)

C. Bernard, INT, 3/20/06 – p.28



One-flavor paradox: diagrams

β

β

α

α

β

QCD valence contraction
(term proportional to R2)

C. Bernard, INT, 3/20/06 – p.29



One-flavor paradox: diagrams

β

β

α

α ⇒
{

α

β

βα

α

α β

β

QCD valence contraction chiral quark flow (note hairpins)
(term proportional to R2)

C. Bernard, INT, 3/20/06 – p.29



One-flavor paradox: resolution

G̃(q) = µ2

Z

d4p

(2π)4

8

>

>

>

<

>

>

>

:

2R2

n2

R

1
„

p2 + M2

η′

I

«„

(p + q)2 + M2

η′

I

« +

+
`

RnR + R2
´
X

Ξ

1
`

p2 + M2

Ξ

´

“

(p + q)2 + M2

Ξ

” −

 

4R

nR

−
2R2

n2

R

!

1
`

p2 + M2

I

´

“

(p + q)2 + M2

I

”

+

 

2R

nR

−
2R2

n2

R

!

0

B

B

@

1
`

p2 + M2

I

´

„

(p + q)2 + M2

η′

I

« +
1

„

p2 + M2

η′

I

«

“

(p + q)2 + M2

I

”

1

C

C

A

9

>

>

>

=

>

>

>

;

• Mη′ heavy

• MΞ light (for all Ξ; including MI )

• Setting R = 1/4 = nR, red terms vanish

• When a → 0, all 16 of MΞ degenerate ⇒ blue terms vanish

• So only η′ left in intermediate state in continuum
√

C. Bernard, INT, 3/20/06 – p.30



Three-flavor paradox

• Creutz: Continuum QCD with nF = 3 (or any odd nF ) is not
even under m→−m, but rooted staggered determinant is
even
• staggered D is anti-hermitian, eigenvalues of D + m

come in pairs m ± iλ, so Det(D + m) is function of m2

• In standard continuum χPT, mass term (take degenerate for
simplicity) is

−mTr(Σ + Σ†)

• For nF = 3, m → −m cannot be rotated away by
non-anomalous chiral transformation

• for m < 0 ground state is Σ = exp(±2πi/3) instead of
Σ = 1

• theory with m < 0 is physically different from m > 0

• m < 0 violates parity

• In finite volume, expansion of QCD level theory around
m = 0 must have odd powers of m as well as even C. Bernard, INT, 3/20/06 – p.31



Three-flavor paradox: resolution

• In SχPT for nF = 3, there are an even number of
flavors × tastes for any integer nR

• Can rotate −m → m for each nR

• (3, 4, 1
4)χ SχPT is a function of |m| only

• But, in continuum limit, (3, 4, 1
4)χ reproduces continuum

χPT correctly, as long as m > 0

• At LQCD level, 4

√

Det(D + m) means that theory does not
have to be analytic function of m around m = 0, even in
finite volume

• Can be function of 4
√

m4 = |m|
• Can be even under m→−m, and yet not just depend on

even powers of m

• Perfectly possible that gives correct odd powers of m for
m > 0 (as SχPT says it does) without getting the m < 0
case right

√
C. Bernard, INT, 3/20/06 – p.32



Consequences: health of rooted theory

• If SχPT is correct, what are the implications for validity of
rooted theory itself?

• When a→0, (nF , 4, nR)χ becomes ordinary χPT for 4nF · nR

“flavors”
• For given flavor combo, all 16 taste pions become

degenerate in continuum (before including anomaly
effects)

• Anomaly affects only taste singlet, flavor singlet meson,
as always

• Taking nR → 1/4 order by order produces standard,
continuum χPT for nF flavors

• NB: assumes vacuum of (nF , 4, nR)χ (Σ = 1) is same as
vacuum of continuum χPT— why m < 0 doesn’t work

• Existing SχPT calculations all show this behavior explicitly

C. Bernard, INT, 3/20/06 – p.33



Consequences: health of rooted theory

• Since SχPT → χPT in continuum, low energy sector of
nF -flavor lattice QCD with rooted staggered quarks
becomes indistinguishable in structure from ordinary
nF -flavor QCD

• No violations of unitarity
• No unphysical nonlocal scales

• Says nothing about sectors not described by χPT, but

• can probably extend to heavy-light physics using SχPT
for heavy-lights (Aubin & CB)

• in nF = 4 case, can probably extend to baryons with
heavy-baryon SχPT (Bailey & CB)
• baryon mass scale might give difficulties in decoupling

to get to nF < 4, though
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Consequences: health of rooted theory

• Note: saying SχPT is valid doesn’t necessarily ⇒ LECs are
correct

• For nF = 4, LECs are correct in degenerate case
(locality ⇒ universality)

• LECs mass independent, so also correct for four
nondegenerate flavors (if SχPT right)

• For nF < 4, decoupling assumptions not strong enough
to guarantee correct LECs
• Would need universality at the lattice QCD level (hope

Shamir succeeds)
• Agreement of simulations with experiment is nice;

agreement between different lattice fermions would be
better!
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Consequences: mixed theory?

• “Mixed” theories have different lattice actions for sea and
valence quarks
• Sea and valence mass renormalizations different ⇒ no

simple way to enforce mS = mV

• Continuum symmetries that rotate valence and sea
quark into each other are violated by discretization
effects

• If quark masses adjusted to make meson masses
MSS = MV V , then MSV still differs by terms O(an)

• Such terms show up as new operators in mixed theory
χPT (Bär, Rupak, Shoresh, . . . )
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Consequences: mixed theory?

• Some (e.g. Kennedy) have suggested that rooted staggered
sea + staggered valence (“rooted staggered”) is a mixed
theory

• But not hard to show that perturbative renormalization of
sea and valence masses are the same

• Also does not look like a mixed theory non-perturbatively, at
least in context of SχPT

• (nF , 4, 1
4)χ obtained order by order from (nF , 4, nR)χ

• (nF , 4, nR)χ have symmetries interchanging valence and
sea quarks

• full symmetry group:
SU(4nRnF +4nV |4nV )L × SU(4nRnF +4nV |4nV )R.

• Taste symmetries broken on lattice at O(a2)

• But flavor subgroup (“residual chiral group”)
U(nRnF +nV |nV )` × U(nRnF +nV |nV )r is exact (up to
mass terms) C. Bernard, INT, 3/20/06 – p.37



Consequences: mixed theory?

• Chiral ops that split MSV from MV V & MSV (when mV =mS)
are forbidden by flavor subgroup in (nF , 4, nR)χ

• Corresponding sea-sea, valence-valence, and valence-sea
mesons degenerate (when quark masses degenerate) in
(nF , 4, nR)χ, and therefore in (nF , 4, 1

4)χ

• Within SχPT, rooted staggered behaves like partially
quenched theory, not like mixed theory

• NB: valence sector “richer” than sea sector
• Valence sector includes particles in continuum limit

whose sea-sector analogues have decoupled from
physical theory

• In normal partially quenched theory, can take more
valence quarks than sea quarks & create valence states
with no sea-quark analogues

• Here, there’s no choice: physical sea-quark states are
always a proper subspace of valence states C. Bernard, INT, 3/20/06 – p.38



Conclusions, Remarks, Speculations

• Most important assumptions:
1) Taste symmetry restored in continuum limit of unrooted

staggered theory

2) Difference V [s] between SχPT theory (4, 4, 1
4)χ and true

chiral theory (4, “1”)χ is analytic in s (for space-time
independent s), up to possible isolated singularities

3) As “charm” mass increases from 2mphys
s , when it has

decoupled from chiral theory, to �1/a, it remains
decoupled from low energy physics

• Assumption 1) unproven but “non-controversial”

• Assumption 2) could be violated by essential singularities at
s = 0 or by phase boundaries away from s = 0

• Some numerical evidence against phase boundaries in
regions of mass (and a) investigated by MILC

• So essential singularity issue seems more pressing
C. Bernard, INT, 3/20/06 – p.39



Conclusions, Remarks, Speculations

• Assumption 3) will be tested by MILC in near future (I hope)

• Simulate nF = 4 theory in region 2mphys
s <∼mc <∼ 1/a

• See if describable by (3, 4, 1
4)χ at low energy

• Assumptions =⇒ SχPT

• But assumptions ⇐= SχPT, so testing assumptions tests
SχPT

• One-flavor and three-flavor theories do not provide
counter-examples to validity of SχPT or the fourth-root trick
itself
• But phase with odd number of negative masses not

amenable to this approach (luckily QCD is not in that
phase)
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Conclusions, Remarks, Speculations

• If SχPT valid, then
• Rooted theory ok at low energy (pseudoscalar meson

sector)
• Rooted theory not “mixed” (at least as far as χPT can

tell)

• Looks like almost all of my arguments would go through for
third root of theory with nF ≤ 3 !

• ⇒ (nF , “4/3”)χ=̇(nF , 4, 1
3)χ

• But that SχPT has no sensible continuum limit
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Conclusions, Remarks, Speculations

• Can the essential singularity be eliminated as a possibility?

• Try to show that all complex derivatives of V [s] vanish at
s = 0, not just the real derivatives
• Essential singularity doesn’t have well defined complex

derivatives: think of exp(−1/z2) when z = iy

• Formally, all arguments from before go through if s is
complex

• But big issue is now that Det is complex — can we
choose phase of 4

√
Det consistently and continuously?

• See Golterman, Shamir, & Svetitsky, hep-lat/0602026;
Golterman’s talk
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Some final thoughts

1) “Staggered quarks are the worst way to simulate QCD. . .
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Some final thoughts

1) “Staggered quarks are the worst way to simulate QCD. . .
except for all the other ways.”

—Anonymous

2) “There is something fascinating about science.
One gets such wholesale returns of conjecture out of such a
trifling investment of fact.”

—Mark Twain

C. Bernard, INT, 3/20/06 – p.43
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