Density Functional Theory from Effective Actions

Dick Furnstahl

Department of Physics
Ohio State University

September, 2005

Collaborators: A. Bhattacharyya, S. Bogner, H.-W. Hammer, S. Puglia, S. Ramanan, A. Schwenk, B. Serot
Outline

Overview: Microscopic DFT

Effective Actions and DFT

Issues and Ideas and Open Problems

Summary
Outline

Overview: Microscopic DFT

Effective Actions and DFT

Issues and Ideas and Open Problems

Summary
DFT from Microscopic NN· · · N Interactions

- **What?**
  - *Constructive* density functional theory (DFT) for nuclei

- **Why now?**
  - Progress in chiral EFT
  - Application of RG (e.g., low-momentum interactions)
  - Advances in computational tools and methods

- **How?**
  - Use framework of effective actions with EFT principles
  - EFT interactions and operators evolved to low-momentum
    - Few-body input not enough (?) \(\Rightarrow\) input from many-body
  - Merge with other energy functional developments
Density Functional Theory (DFT) with Coulomb

- Dominant application: inhomogeneous electron gas
- Interacting point electrons in static potential of atomic nuclei
- “Ab initio” calculations of atoms, molecules, crystals, surfaces, . . .
- HF is good starting point, DFT/LSD is better, DFT/GGA is better still, . . .

Atomization Energies of Hydrocarbon Molecules

- Hartree-Fock
- DFT Local Spin Density Approximation
- DFT Generalized Gradient Approximation

Dick Furnstahl

DFT from Effective Actions
Sources of Nonperturbative Physics for NN

1. Strong short-range repulsion ("hard core")
2. Iterated tensor ($S_{12}$) interaction
3. Near zero-energy bound states

Consequences:
- In Coulomb DFT, Hartree-Fock gives dominate contribution $\Rightarrow$ correlations are small corrections $\Rightarrow$ DFT works!
- cf. NN interactions $\Rightarrow$ correlations $\gg$ HF $\Rightarrow$ DFT fails?!

However, the first two depend on the resolution $\Rightarrow$ different cutoffs, the third one is affected by Pauli blocking.

\[ V_1 \text{ (np) } A_{18} \]

$\tau_0 \sim 1-1.5 \text{ fm in nuclei}$
Sources of Nonperturbative Physics for NN

1. Strong short-range repulsion ("hard core")
2. Iterated tensor ($S_{12}$) interaction
3. Near zero-energy bound states

Consequences:
- In Coulomb DFT, Hartree-Fock gives dominate contribution
  $\implies$ correlations are small corrections $\implies$ DFT works!
- cf. NN interactions $\implies$ correlations $\gg$ HF $\implies$ DFT fails??

However...

...the first two depend on the resolution $\implies$ different cutoffs
third one is affected by Pauli blocking
Sources of Nonperturbative Physics for NN

1. Strong short-range repulsion ("hard core")
2. Iterated tensor ($S_{12}$) interaction
3. Near zero-energy bound states

**Consequences:**
- In Coulomb DFT, Hartree-Fock gives dominate contribution $\implies$ correlations are small corrections $\implies$ DFT works!
- cf. NN interactions $\implies$ correlations $\gg$ HF $\implies$ DFT fails??

**However . . .**
- the first two depend on the *resolution* $\implies$ different cutoffs
- third one is affected by Pauli blocking
Wavelength and Resolution
The Deuteron at Different Resolutions

- Repulsive core $\Rightarrow$ short-distance suppression
  $\Rightarrow$ high-momentum components
The Deuteron at Different Resolutions

- Repulsive core $\implies$ short-distance suppression $\implies$ high-momentum components
- Low-momentum potential $\implies$ much simpler wave function!
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_\Lambda | \psi_d \rangle$ for $\Lambda = 6.0 \text{ fm}^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_\Lambda | \psi_d \rangle$ for $\Lambda = 5.0 \text{ fm}^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_\Lambda | \psi_d \rangle$ for $\Lambda = 4.0 \text{ fm}^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_\Lambda | \psi_d \rangle$ for $\Lambda = 3.0 \text{ fm}^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 2.0 \text{fm}^{-1}$
In-Medium Wave Functions (NN Only)

$^1S_0$ at $k_F = 1.35 \text{ fm}^{-1}$
$[P = 0, k = 0.1 \text{ fm}^{-1}, m^*/m = 1]$

$^3S_1$ at $k_F = 1.35 \text{ fm}^{-1}$
$[P = 0, k = 0.1 \text{ fm}^{-1}, m^*/m = 1]$
In-Medium Wave Functions (NN Only)

$^1S_0$ at $k_F = 1.35$ fm$^{-1}$

$[P = 0, k = 0.1$ fm$^{-1}$, $m^*/m = 1]$

$^3S_1$ at $k_F = 1.35$ fm$^{-1}$

$[P = 0, k = 0.1$ fm$^{-1}$, $m^*/m = 1]$
Conventional Wisdom on Nuclear Many-Body


  “The theory must be such that it can deal with any nucleon-nucleon (NN) force, including hard or ‘soft’ core, tensor forces, and other complications. *It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary experimental evidence, like the binding energy of $H^3$).*”
Conventional Wisdom on Nuclear Many-Body

Hans Bethe in review of nuclear matter (1971):

“The theory must be such that it can deal with any nucleon-nucleon (NN) force, including hard or ‘soft’ core, tensor forces, and other complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary experimental evidence, like the binding energy of $H^3$).”

“Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required.”
EFT and RG Make Physics Easier

- There’s an old vaudeville joke about a doctor and patient . . .

Patient: Doctor, doctor, it hurts when I do this!
Doctor: Then don’t do that.

- Weinberg’s Third Law of Progress in Theoretical Physics:
  “You may use any degrees of freedom you like to describe a physical system, but if you use the wrong ones, you’ll be sorry!”
Chiral Effective Field Theory for Two Nucleons

- Epelbaum, Meißner, et al.
- Also Entem, Machleidt
- $\mathcal{L}_{\pi N}$ + match at low energy

<table>
<thead>
<tr>
<th>$Q^\nu$</th>
<th>$1\pi$</th>
<th>$2\pi$</th>
<th>$4N$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dick Furnstahl

DFT from Effective Actions
Epelbaum, Meißner, et al.
Also Entem, Machleidt
$L_{\pi N} + \text{match at low energy}$

<table>
<thead>
<tr>
<th>$Q^\nu$</th>
<th>$1\pi$</th>
<th>$2\pi$</th>
<th>$4N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^0$</td>
<td>$\pi$</td>
<td></td>
<td>$^{(2)}$</td>
</tr>
</tbody>
</table>

Dick Furnstahl
DFT from Effective Actions
Chiral Effective Field Theory for Two Nucleons

- Epelbaum, Meißner, et al.
- Also Entem, Machleidt
- $\mathcal{L}_{\pi N}$ + match at low energy

<table>
<thead>
<tr>
<th>$Q^\nu$</th>
<th>$1\pi$</th>
<th>$2\pi$</th>
<th>$4N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^0$</td>
<td>$\pi$</td>
<td>$\pi$</td>
<td>$(2)$</td>
</tr>
<tr>
<td>$Q^1$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dick Furnstahl  
DFT from Effective Actions
Chiral Effective Field Theory for Two Nucleons

- Epelbaum, Meißner, et al.
- Also Entem, Machleidt
- $\mathcal{L}_{\pi N} + \text{match at low energy}$

<table>
<thead>
<tr>
<th>$Q^\nu$</th>
<th>$1\pi$</th>
<th>$2\pi$</th>
<th>$4N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^0$</td>
<td><img src="1S0.png" alt="graph" /></td>
<td><img src="3S1.png" alt="graph" /></td>
<td><img src="3P0.png" alt="graph" /></td>
</tr>
<tr>
<td>$Q^1$</td>
<td><img src="1D2.png" alt="graph" /></td>
<td><img src="3D3.png" alt="graph" /></td>
<td><img src="3G5.png" alt="graph" /></td>
</tr>
<tr>
<td>$Q^2$</td>
<td><img src="1S0.png" alt="graph" /></td>
<td><img src="3S1.png" alt="graph" /></td>
<td><img src="3P0.png" alt="graph" /></td>
</tr>
</tbody>
</table>
Epelbaum, Meißner, et al.
Also Entem, Machleidt
$\mathcal{L}_{\pi N}$ + match at low energy

<table>
<thead>
<tr>
<th>$Q^\nu$</th>
<th>$1\pi$</th>
<th>$2\pi$</th>
<th>$4N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q^0$</td>
<td>$\pi$</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>$Q^1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q^2$</td>
<td></td>
<td></td>
<td>(7)</td>
</tr>
<tr>
<td>$Q^3$</td>
<td>$\mathcal{L}_{\pi N}$</td>
<td>$\mathcal{L}_{\pi N}$</td>
<td></td>
</tr>
</tbody>
</table>

Dick Furnstahl  
DFT from Effective Actions
How do you go from Chiral EFT to a Potential?

- E.g., see Evgeny Epelbaum review: nucl-th/0509032
- Method of unitary transformations (e.g., Okubo)
  - $P$ space has nucleons only, $Q$ space has the pions
  - Use chiral expansion in $\{p, m_\pi\}/\Lambda$
  - Energy-independent potential
- Consistent operators constructed with power counting
State of the Art: $N^3LO$
State of the Art: $N^3$LO

![Phase Shift vs Lab. Energy](image)
State of the Art: $N^3LO$
State of the Art: $N^3$LO

![Graphs showing $d\sigma/d\Omega$ vs $\theta$]

Dick Furnstahl
DFT from Effective Actions
Many-Body Forces are Inevitable!

- **What if we have three nucleons interacting?**
- **Successive two-body scatterings with short-lived high-energy intermediate states unresolved** → **must be absorbed into three-body force**

![Diagram showing interactions between nucleons](image)

### Triton Binding Energy

<table>
<thead>
<tr>
<th>Binding Energy (MeV)</th>
<th>AV18</th>
<th>CD Bonn</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Source: Bogner, Nogga, Schwenk]
Many-Body Forces are Inevitable!

What if we have three nucleons interacting?

Successive two-body scatterings with short-lived high-energy intermediate states unresolved ⇒ must be absorbed into three-body force

How do we organize (3, 4, ...)–body forces? EFT!
(Approximate) Nuclear Matter with NN and NNN

Hartree-Fock

\[ E/A \text{ [MeV]} \]

\[ k_F \text{ [fm}^{-1}] \]

\[ \Lambda = 1.6 \text{ fm}^{-1} \]
\[ \Lambda = 1.9 \text{ fm}^{-1} \]
\[ \Lambda = 2.1 \text{ fm}^{-1} \]
\[ \Lambda = 2.3 \text{ fm}^{-1} \]
\[ \Lambda = 2.1 \text{ fm}^{-1} \text{ [no V}_{3N}\text{]} \]

Dick Furnstahl

DFT from Effective Actions
(Approximate) Nuclear Matter with NN and NNN

Hartree-Fock

"≈ 2nd Order"

Dick Furnstahl
DFT from Effective Actions
(Nuclear) Many-Body Physics: “Old” vs. “New”

<table>
<thead>
<tr>
<th>One Hamiltonian for all problems and energy/length scales (not QCD!)</th>
<th>Infinite # of low-energy potentials; different resolutions $\implies$ different dof’s and Hamiltonians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find the “best” potential</td>
<td>There is no best potential $\implies$ use a convenient one!</td>
</tr>
<tr>
<td>Two-body data may be sufficient; many-body forces as last resort</td>
<td>Many-body data needed and many-body forces inevitable</td>
</tr>
<tr>
<td>Avoid (hide) divergences</td>
<td>Exploit divergences (cutoff dependence as tool)</td>
</tr>
<tr>
<td>Choose approximations (e.g., diagrams) by “art”</td>
<td>Power counting determines diagrams and truncation error</td>
</tr>
</tbody>
</table>
My Favored Scenario for DFT (Today!)

- Construct a chiral EFT to a given order ($N^3\text{LO}$ at present)
  - including many-body forces ($N^3\text{LO}$ has leading 4-body)
  - choose cutoff regulator $\Lambda$ as large as possible up to breakdown scale to minimize truncation error
- Evolve $\Lambda$ down with RG (to $\Lambda \approx 2 \text{ fm}^{-1}$ for ordinary nuclei)
  - all interactions
  - and other operators
- Generate density functional in effective action form
  - direct construction (e.g., DME++)
  - or match to finite-density EFT expansion
Overview: Microscopic DFT

Effective Actions and DFT

Issues and Ideas and Open Problems

Summary
Hohenberg-Kohn: There exists an energy functional $E_{\nu}[\rho]$ . . .

$$E_{\nu}[\rho] = F_{\text{HK}}[\rho] + \int d^3 x \, v(x) \rho(x)$$

- $F_{\text{HK}}$ is universal (same for any external $v$) $\Rightarrow H_2$ to DNA!
- Introduce orbitals and minimize energy functional $\Rightarrow E_{gs}, \rho_{gs}$
- Useful if you can approximate the energy functional
DFT as Effective Action

- Effective action is generically the Legendre transform of a generating functional with external source.

- Partition function in presence of $J(x)$ coupled to density:

$$Z[J] = e^{-W[J]} \sim \text{Tr} e^{-\beta(\hat{H} + J \hat{\rho})} \rightarrow \int \mathcal{D}[\psi^\dagger] \mathcal{D}[\psi] e^{-\int [\mathcal{L} + J \psi^\dagger \psi]}$$

- The density $\rho(x)$ in the presence of $J(x)$ is [we want $J = 0$]

$$\rho(x) \equiv \langle \hat{\rho}(x) \rangle_J = \frac{\delta W[J]}{\delta J(x)}$$

- Invert to find $J[\rho]$ and Legendre transform from $J$ to $\rho$:

$$\Gamma[\rho] = W[J] - \int J \rho \quad \text{and} \quad J(x) = -\frac{\delta \Gamma[\rho]}{\delta \rho(x)}$$
Partition Function in Zero Temperature Limit

- Consider Hamiltonian with time-independent source $J(x)$:
  \[ \hat{H}(J) = \hat{H} + \int J \psi^\dagger \psi \]

- If ground state is isolated (and bounded from below),
  \[ e^{-\beta \hat{H}} = e^{-\beta E_0} \left[ |0\rangle \langle 0| + O(e^{-\beta (E_1 - E_0)}) \right] \]

- As $\beta \to \infty$, $Z[J] \Rightarrow$ ground state of $\hat{H}(J)$ with energy $E_0(J)$
  \[ Z[J] = e^{-W[J]} \sim \text{Tr} \ e^{-\beta (\hat{H} + J \rho)} \Rightarrow E_0(J) = \lim_{\beta \to \infty} -\frac{1}{\beta} \log Z[J] = \frac{1}{\beta} W[J] \]}
Partition Function in Zero Temperature Limit

Consider Hamiltonian with time-independent source $J(x)$:

$$
\hat{H}(J) = \hat{H} + \int J \psi^\dagger \psi
$$

If ground state is isolated (and bounded from below),

$$
e^{-\beta \hat{H}} = e^{-\beta E_0} \left[ |0\rangle \langle 0| + \mathcal{O}(e^{-\beta(E_1-E_0)}) \right]
$$

As $\beta \to \infty$, $Z[J] \xrightarrow{}$ ground state of $\hat{H}(J)$ with energy $E_0(J)$

$$
Z[J] = e^{-W[J]} \sim \text{Tr} \ e^{-\beta(\hat{H}+J \hat{\rho})} \implies E_0(J) = \lim_{\beta \to \infty} -\frac{1}{\beta} \log Z[J] = \frac{1}{\beta} W[J]
$$

Substitute and separate out the pieces:

$$
E_0(J) = \langle \hat{H}(J) \rangle_J = \langle \hat{H} \rangle_J + \int J \langle \psi^\dagger \psi \rangle_J = \langle \hat{H} \rangle_J + \int J \rho_J
$$

Expectation value of $\hat{H}$ in ground state generated by $J[\rho]$

$$
\langle \hat{H} \rangle_J = E_0(J) - \int J \rho = \frac{1}{\beta} \Gamma[J]
$$
Putting it all together . . .

\[
\frac{1}{\beta} \Gamma[\rho] = \langle \hat{H} \rangle_J \rightarrow 0 \ E_0 \quad \text{and} \quad J(x) = - \frac{\delta \Gamma[\rho]}{\delta \rho(x)} \rightarrow 0 \left. \frac{\delta \Gamma[\rho]}{\delta \rho(x)} \right|_{\rho_{gs}(x)} = 0
\]

\[\implies \text{For static } \rho(x), \ \Gamma[\rho] \propto \text{the DFT energy functional } F_{\text{HK}}!\]
Putting it all together . . .

\[ \frac{1}{\beta} \Gamma[\rho] = \langle \hat{H} \rangle_J \xrightarrow{\text{as } J \to 0} E_0 \quad \text{and} \quad J(x) = - \frac{\delta \Gamma[\rho]}{\delta \rho(x)} \xrightarrow{\text{as } J \to 0} \left. \frac{\delta \Gamma[\rho]}{\delta \rho(x)} \right|_{\rho_{\text{gs}}(x)} = 0 \]

\[ \implies \text{For static } \rho(x), \Gamma[\rho] \propto \text{the DFT energy functional } F_{\text{HK}}! \]

- The true ground state (with \( J = 0 \)) is a variational minimum
  - So more sources should be better! (e.g., \( \Gamma[\rho, \tau, J, \cdots] \))
Putting it all together . . .

\[
\frac{1}{\beta} \Gamma[\rho] = \langle \hat{H} \rangle_J \xrightarrow{J \to 0} E_0 \quad \text{and} \quad J(x) = -\frac{\delta \Gamma[\rho]}{\delta \rho(x)} \xrightarrow{J \to 0} \left. \frac{\delta \Gamma[\rho]}{\delta \rho(x)} \right|_{\rho_{\text{gs}}(x)} = 0
\]

\[\implies \text{For static } \rho(x), \Gamma[\rho] \propto \text{the DFT energy functional } F_{\text{HK}}!\]

- The true ground state (with \( J = 0 \)) is a variational minimum
  - So more sources should be better! (e.g., \( \Gamma[\rho, \tau, J, \cdots] \))
- Universal dependence on external potential is trivial:

\[
\Gamma[\rho] = W[J] - \int J \rho = W_{v=0}[J + v] - \int [(J + v) - v] \rho = \Gamma_{v=0}[\rho] + \int v \rho
\]

- But functionals change with resolution or field redefinitions
  \[\implies \text{only stationary points are observables}\]

- If uniform, find spontaneously broken ground state; if finite . . .
- NOTE: Beware of new UV divergences!
- [For Minkowski-space version of this, see \( \text{Weinberg Vol. II} \) ]
Paths to the Effective Action Density Functional

1. Follow Coulomb Kohn-Sham DFT
   - Calculate asymmetric nuclear matter as function of density
     $$\Rightarrow$$ LDA functional + standard Kohn-Sham procedure
   - Add semi-empirical gradient expansion

2. RG approach [Polonyi/Schwenk]

3. Auxiliary field method [Faussurier, Valiev/Fernando]
   - Eliminate $$\psi^\dagger \psi$$ in favor of auxiliary field $$\phi$$
   - Loop expansion about expectation value $$\phi$$
   - Kohn-Sham: Use freedom to require density unchanged

4. Inversion method [Fukuda et al., Valiev/Fernando]
   $$\Rightarrow$$ systematic Kohn-Sham DFT
Kohn-Sham DFT

Interacting density in $V_{\text{HO}} \equiv$ Non-interacting density in $V_{\text{KS}}$

Orbitals $\{\phi_i(x)\}$ in local potential $V_{\text{KS}}([\rho], x)$

$$\left[-\nabla^2/2m + V_{\text{KS}}(x)\right]\phi_i = \epsilon_i \phi_i \implies \rho(x) = \sum_{i=1}^{A} |\phi_i(x)|^2$$
Kohn-Sham DFT

- Interacting density in $V_{HO} \equiv$ Non-interacting density in $V_{KS}$
- Orbitals $\{\phi_i(x)\}$ in local potential $V_{KS}([\rho], x)$

$$\left[-\nabla^2/2m + V_{KS}(x)\right]\phi_i = \varepsilon_i \phi_i \implies \rho(x) = \sum_{i=1}^{A} |\phi_i(x)|^2$$

- Plan: Make this work by construction
  - inversion method ("point-coupling")
  - auxiliary fields (e.g., "mesons" in covariant DFT)
What can Power Counting do for DFT?

- Given $W[J]$ as an EFT expansion, how do we find $\Gamma[\rho]$?

\[
\Gamma[\rho] = W[J] - \int J \rho
\]

- Inversion method: order-by-order inversion from $W[J]$ to $\Gamma[\rho]$
  - Decompose $J(x) = J_0(x) + J_{LO}(x) + J_{NLO}(x) + \ldots$
  - Two conditions on $J_0$:

\[
\rho(x) = \frac{\delta W_0[J_0]}{\delta J_0(x)} \quad \text{and} \quad J_0(x)\bigg|_{\rho=\rho_{gs}} = \frac{\delta \Gamma_{\text{interacting}}[\rho]}{\delta \rho(x)}\bigg|_{\rho=\rho_{gs}}
\]
What can Power Counting do for DFT?

- Given $W[J]$ as an EFT expansion, how do we find $\Gamma[\rho]$?
  
  $$\Gamma[\rho] = W[J] - \int J\rho$$

- Inversion method: order-by-order inversion from $W[J]$ to $\Gamma[\rho]$
  - Decompose $J(x) = J_0(x) + J_{LO}(x) + J_{NLO}(x) + \ldots$
  - Two conditions on $J_0$:
    $$\rho(x) = \frac{\delta W_0[J_0]}{\delta J_0(x)} \quad \text{and} \quad J_0(x)\bigg|_{\rho=\rho_{gs}} = \frac{\delta \Gamma_{interacting}[\rho]}{\delta \rho(x)}\bigg|_{\rho=\rho_{gs}}$$

- Interpretation: $J_0$ is the external potential that yields for a noninteracting system the exact density
  - This is the Kohn-Sham potential!
  - Two conditions involving $J_0 \implies$ Self-consistency
Treat Source $J(x)$ as a Background Field

- Effective action as a path integral $\Rightarrow$ construct $W[J]$, order-by-order in an expansion (e.g., EFT power counting)
- Propagators (lines) are in the background field $J(x)$

\[ G^0_J(x, x'; \omega) = \sum_{\alpha} \psi_{\alpha}(x) \psi^*_{\alpha}(x') \left[ \frac{\theta(\epsilon_{\alpha} - \epsilon_F)}{\omega - \epsilon_{\alpha} + i\eta} + \frac{\theta(\epsilon_F - \epsilon_{\alpha})}{\omega - \epsilon_{\alpha} - i\eta} \right] \]

where $\psi_{\alpha}(x)$ satisfies:
\[ \left[ -\frac{\nabla^2}{2M} + v(x) - J(x) \right] \psi_{\alpha}(x) = \epsilon_{\alpha} \psi_{\alpha}(x) \]
Treat Source $J(x)$ as a Background Field

- Effective action as a path integral $\implies$ construct $W[J]$, order-by-order in an expansion (e.g., EFT power counting)
- Propagators (lines) are in the background field $J(x)$
  \begin{equation*}
  G^0_J(x, x'; \omega) = \sum_\alpha \psi_\alpha(x) \psi^*_\alpha(x') \left[ \frac{\theta(\epsilon_\alpha - \epsilon_F)}{\omega - \epsilon_\alpha + i\eta} + \frac{\theta(\epsilon_F - \epsilon_\alpha)}{\omega - \epsilon_\alpha - i\eta} \right]
  \end{equation*}

  where $\psi_\alpha(x)$ satisfies: 
  \begin{equation*}
  \left[ -\frac{\nabla^2}{2M} + v(x) - J(x) \right] \psi_\alpha(x) = \epsilon_\alpha \psi_\alpha(x)
  \end{equation*}

- E.g., apply to short-range LO contribution: Hartree-Fock

\begin{equation*}
W_1[J] = \frac{1}{2} \nu(\nu - 1)C_0 \int d^3x \int_\infty d\omega \int_\infty d\omega' G^0_J(x, x; \omega) G^0_J(x, x; \omega')
\end{equation*}

\begin{equation*}
= -\frac{1}{2} \frac{(\nu - 1)}{\nu} C_0 \int d^3x \left[ \rho_J(x) \right]^2 \text{ where } \rho_J(x) \equiv \nu \sum_\alpha |\psi_\alpha(x)|^2
\end{equation*}
Kohn-Sham Via Inversion Method (cf. KLW [1960])

- Inversion method for effective action DFT [Fukuda et al.]
- order-by-order matching in $\lambda$ (e.g., EFT expansion)

$$\text{diagrams} \quad \Rightarrow \quad W[J, \lambda] = W_0[J] + \lambda W_1[J] + \lambda^2 W_2[J] + \cdots$$

$$\text{assume} \quad \Rightarrow \quad J[\rho, \lambda] = J_0[\rho] + \lambda J_1[\rho] + \lambda^2 J_2[\rho] + \cdots$$

$$\text{derive} \quad \Rightarrow \quad \Gamma[\rho, \lambda] = \Gamma_0[\rho] + \lambda \Gamma_1[\rho] + \lambda^2 \Gamma_2[\rho] + \cdots$$

- Start with exact expressions for $\Gamma$ and $\rho$

$$\Gamma[\rho] = W[J] - \int d^4x \ J(x) \rho(x) \quad \Rightarrow \quad \rho(x) = \frac{\delta W[J]}{\delta J(x)}$$

$$\Rightarrow \text{plug in expansions with } \rho \text{ treated as order unity}$$
Kohn-Sham Via Inversion Method (cf. KLW [1960])

- Inversion method for effective action DFT [Fukuda et al.]
- order-by-order matching in $\lambda$ (e.g., EFT expansion)

\[
\mathcal{W}[J, \lambda] = \mathcal{W}_0[J] + \lambda \mathcal{W}_1[J] + \lambda^2 \mathcal{W}_2[J] + \cdots
\]

- assume

\[
J[\rho, \lambda] = J_0[\rho] + \lambda J_1[\rho] + \lambda^2 J_2[\rho] + \cdots
\]

- derive

\[
\Gamma[\rho, \lambda] = \Gamma_0[\rho] + \lambda \Gamma_1[\rho] + \lambda^2 \Gamma_2[\rho] + \cdots
\]

- Zeroth order is noninteracting system with potential $J_0(x)$

\[
\Gamma_0[\rho] = \mathcal{W}_0[J_0] - \int d^4x J_0(x) \rho(x) \quad \Rightarrow \quad \rho(x) = \frac{\delta \mathcal{W}_0[J_0]}{\delta J_0(x)}
\]

\[
\Rightarrow \text{Kohn-Sham system with the exact density! } J_0 \equiv V_{KS}
\]
Kohn-Sham Via Inversion Method (cf. KLW [1960])

- Inversion method for effective action DFT [Fukuda et al.]
  - order-by-order matching in $\lambda$ (e.g., EFT expansion)

\begin{align*}
\text{diagrams} & \quad \Rightarrow \quad \mathcal{W}[J, \lambda] = \mathcal{W}_0[J] + \lambda \mathcal{W}_1[J] + \lambda^2 \mathcal{W}_2[J] + \cdots \\
\text{assume} & \quad \Rightarrow \quad J[\rho, \lambda] = J_0[\rho] + \lambda J_1[\rho] + \lambda^2 J_2[\rho] + \cdots \\
\text{derive} & \quad \Rightarrow \quad \Gamma[\rho, \lambda] = \Gamma_0[\rho] + \lambda \Gamma_1[\rho] + \lambda^2 \Gamma_2[\rho] + \cdots
\end{align*}

- Zeroth order is noninteracting system with potential $J_0(x)$

\[ \Gamma_0[\rho] = \mathcal{W}_0[J_0] - \int d^4x \ J_0(x) \rho(x) \quad \Rightarrow \quad \rho(x) = \frac{\delta \mathcal{W}_0[J_0]}{\delta J_0(x)} \]

\[ \Rightarrow \quad \text{Kohn-Sham system with the exact density!} \quad J_0 \equiv V_{KS} \]

- Diagonalize $\mathcal{W}_0[J_0]$ by introducing KS orbitals $\Rightarrow$ sum of $\varepsilon_i$'s
Kohn-Sham Via Inversion Method (cf. KLW [1960])

- Inversion method for effective action DFT [Fukuda et al.]
  - order-by-order matching in $\lambda$ (e.g., EFT expansion)

$$W[J, \lambda] = W_0[J] + \lambda W_1[J] + \lambda^2 W_2[J] + \cdots$$

- assume

$$J[\rho, \lambda] = J_0[\rho] + \lambda J_1[\rho] + \lambda^2 J_2[\rho] + \cdots$$

- derive

$$\Gamma[\rho, \lambda] = \Gamma_0[\rho] + \lambda \Gamma_1[\rho] + \lambda^2 \Gamma_2[\rho] + \cdots$$

- Zeroth order is noninteracting system with potential $J_0(x)$

$$\Gamma_0[\rho] = W_0[J_0] - \int d^4x J_0(x) \rho(x) \quad \Rightarrow \quad \rho(x) = \frac{\delta W_0[J_0]}{\delta J_0(x)}$$

$$\Rightarrow$$ Kohn-Sham system with the exact density! $J_0 \equiv V_{KS}$

- Diagonalize $W_0[J_0]$ by introducing KS orbitals $\Rightarrow$ sum of $\epsilon_i$'s

- Find $J_0$ for the ground state via self-consistency loop:

$$J_0 \to W_1 \to \Gamma_1 \to J_1 \to W_2 \to \Gamma_2 \to \cdots \Rightarrow J_0(x) = \sum_{i>0} \frac{\delta \Gamma_i[\rho]}{\delta \rho(x)}$$
Kohn-Sham Potential

- **Local** $J_0(x)$ [cf. non-local, state-dependent $\Sigma^*(x, x'; \omega)$]

  \[
  \text{e.g., } J_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \rho(x)} \quad \text{and} \quad \eta_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \tau(x)}
  \]

- Direct derivatives (e.g., DME++) are easiest, or use “inverse density-density correlator”

  \[
  J_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho]}{\delta \rho(x)} = \int \left( \frac{\delta \rho(x)}{\delta J_0(y)} \right)^{-1} \frac{\delta \Gamma_{\text{int}}[\rho]}{\delta J_0(y)} = - - \]

  \[
  = \quad \text{anomalous diagrams}
  \]

- **New Feynman rules for $\Gamma_{\text{int}}$ → anomalous diagrams**

  \[
  \Gamma_{\text{int}} = \quad \text{anomalous diagrams}
  \]
Kohn-Sham Potential

- **Local** $J_0(x)$  
  [cf. non-local, state-dependent $\Sigma^*(x, x'; \omega)$]

$$J_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \rho(x)} \quad \text{and} \quad \eta_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \tau(x)}$$

- Direct derivatives (e.g., DME++) are easiest, or use “inverse density-density correlator”

$$J_0(x) = - \begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2} \\
\text{Diagram 3}
\end{array} + \cdots$$

$$= \begin{array}{c}
\text{Diagram 4} \\
\text{Diagram 5} \\
\text{Diagram 6}
\end{array} + \cdots$$

- New Feynman rules for $\Gamma_{\text{int}} \implies$ anomalous diagrams

$$\Gamma_{\text{int}} = \begin{array}{c}
\text{Diagram 7} \\
\text{Diagram 8} \\
\text{Diagram 9} \\
\text{Diagram 10} \\
\text{Diagram 11}
\end{array} + \cdots$$
Kohn-Sham Potential

- **Local** $J_0(x)$  
  [cf. non-local, state-dependent $\Sigma^*(x, x'; \omega)$]

  \[
  e.g., \quad J_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \rho(x)} \quad \text{and} \quad \eta_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \tau(x)}
  \]

- Direct derivatives (e.g., DME++) are easiest, or use “inverse density-density correlator”

  \[
  J_0(x) = - \quad \begin{array}{c}
  \begin{array}{c}
  \text{Diagram 1}\n  \end{array}
  \end{array} + \quad \begin{array}{c}
  \begin{array}{c}
  \text{Diagram 2}\n  \end{array}
  \end{array} + \cdots
  \]

  \[
  = \begin{array}{c}
  \begin{array}{c}
  \text{Diagram 3}\n  \end{array}
  \end{array} + \quad \begin{array}{c}
  \begin{array}{c}
  \text{Diagram 4}\n  \end{array}
  \end{array} + \cdots
  \]

- **New Feynman rules for** $\Gamma_{\text{int}} \Longrightarrow$ anomalous diagrams

  \[
  \Gamma_{\text{int}} = \begin{array}{c}
  \begin{array}{c}
  \text{Diagram 5}\n  \end{array}
  \end{array} + \begin{array}{c}
  \begin{array}{c}
  \text{Diagram 6}\n  \end{array}
  \end{array} + \begin{array}{c}
  \begin{array}{c}
  \text{Diagram 7}\n  \end{array}
  \end{array} + \begin{array}{c}
  \begin{array}{c}
  \text{Diagram 8}\n  \end{array}
  \end{array} + \cdots
  \]
Kohn-Sham Potential

- **Local** $J_0(x)$  [cf. non-local, state-dependent $\Sigma^*(x, x'; \omega)$]

  \[ J_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \rho(x)} \quad \text{and} \quad \eta_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \tau(x)} \]

  e.g., $J_0(x) = \delta \Gamma_{\text{int}}[\rho, \tau]/\delta \rho(x)$ and $\eta_0(x) = \delta \Gamma_{\text{int}}[\rho, \tau]/\delta \tau(x)$

- Direct derivatives (e.g., DME++) are easiest, or use "inverse density-density correlator"

\[ J_0(x) = - \quad \text{Diagram 1} \quad + \quad \text{Diagram 2} \quad + \cdots \]

\[ = \quad \text{Diagram 3} \quad + \quad \text{Diagram 4} \quad + \cdots \]

- **New Feynman rules for $\Gamma_{\text{int}}$ \implies anomalous diagrams**

\[ \Gamma_{\text{int}} = \quad \text{Diagram 5} \quad + \quad \text{Diagram 6} \quad + \quad \text{Diagram 7} \quad - \quad \text{Diagram 8} \quad + \cdots \]
Kohn-Sham Potential

- **Local** $J_0(x)$ [cf. non-local, state-dependent $\Sigma^*(x, x'; \omega)$]

  e.g., $J_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \rho(x)}$ and $\eta_0(x) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \tau(x)}$

- Direct derivatives (e.g., DME++) are easiest, or use “inverse density-density correlator”

\[ J_0(x) = - \begin{align*}
& - \left[ \begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2}
\end{array} \right] + \cdots
\end{align*} \]

\[ = \begin{align*}
& \left[ \begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2}
\end{array} \right] + \cdots
\end{align*} \]

- New Feynman rules for $\Gamma_{\text{int}} \longrightarrow$ anomalous diagrams

\[ \Gamma_{\text{int}} = \begin{align*}
& \left[ \begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2}
\end{array} \right] + \cdots
\end{align*} \]
Example: Dilute EFT Ingredients

See “Crossing the Border” [nucl-th/0008064]

1. Use the most general $\mathcal{L}$ with low-energy dof’s consistent with global and local symmetries of underlying theory

   \[
   \mathcal{L}_{\text{eft}} = \psi^\dagger \left[ i \frac{\partial}{\partial t} + \frac{\nabla^2}{2M} \right] \psi - \frac{C_0}{2} (\psi^\dagger \psi)^2 - \frac{D_0}{6} (\psi^\dagger \psi)^3 + \ldots
   \]

2. Declaration of regularization and renormalization scheme

   - natural $a_0 \Rightarrow$ dimensional regularization and min. subtraction

3. Well-defined power counting $\Rightarrow$ small expansion parameters

   - use the separation of scales $\Rightarrow \frac{k_F}{\Lambda}$ with $\Lambda \sim 1/R \Rightarrow k_F a_0$, etc.

\[
\mathcal{O}(k_F^6) : \quad \mathcal{O}(k_F^7) : \quad + \quad \mathcal{O}\left(k_F^6\right) : \quad \mathcal{O}\left(k_F^7\right) : \quad +
\]

\[
\mathcal{E} = \rho \frac{k_F^2}{2M} \left[ \frac{3}{5} + \frac{2}{3\pi} (k_F a_0) + \frac{4}{35\pi^2} (11 - 2 \ln 2)(k_F a_0)^2 + \cdots \right]
\]
Comparing Skyrme and Dilute Functionals

- Skyrme energy density functional (for $N = Z$)

$$E[\rho, \tau, J] = \int d^3x \left\{ \frac{\tau}{2M} + \frac{3}{8} t_0 \rho^2 + \frac{1}{16} (3t_1 + 5t_2) \rho \tau + \frac{1}{64} (9t_1 - 5t_2)(\nabla \rho)^2 
- \frac{3}{4} W_0 \rho \nabla \cdot J + \frac{1}{16} t_3 \rho^{2+\alpha} + \cdots \right\}$$

- Dilute $\rho \tau$ energy density functional for $\nu = 4$ ($V_{\text{external}} = 0$)

$$E[\rho, \tau, J] = \int d^3x \left\{ \frac{\tau}{2M} + \frac{3}{8} C_0 \rho^2 + \frac{1}{16} (3C_2 + 5C_2') \rho \tau + \frac{1}{64} (9C_2 - 5C_2')(\nabla \rho)^2
- \frac{3}{4} C_2'' \rho \nabla \cdot J + \frac{c_1}{2M} C_0^2 \rho^{7/3} + \frac{c_2}{2M} C_0^3 \rho^{8/3} + \frac{1}{16} D_0 \rho^3 + \cdots \right\}$$
Comparing Skyrme and Dilute Functionals

- Skyrme energy density functional (for $N = Z$)

$$E[\rho, \tau, J] = \int d^3x \left\{ \frac{\tau}{2M} + \frac{3}{8} t_0 \rho^2 + \frac{1}{16} (3t_1 + 5t_2) \rho \tau + \frac{1}{64} (9t_1 - 5t_2) (\nabla \rho)^2 ight. \\
- \frac{3}{4} W_0 \rho \nabla \cdot J + \frac{1}{16} t_3 \rho^{2+\alpha} + \cdots \left\}$$

- Dilute $\rho \tau$ energy density functional for $\nu = 4$ ($V_{\text{external}} = 0$)

$$E[\rho, \tau, J] = \int d^3x \left\{ \frac{\tau}{2M} + \frac{3}{8} C_0 \rho^2 + \frac{1}{16} (3C_2 + 5C_2') \rho \tau + \frac{1}{64} (9C_2 - 5C_2') (\nabla \rho)^2 ight. \\
- \frac{3}{4} C_2'' \rho \nabla \cdot J + \frac{C_1}{2M} C_0^2 \rho^{7/3} + \frac{C_2}{2M} C_0^3 \rho^{8/3} + \frac{1}{16} D_0 \rho^3 + \cdots \left\}$$

- Same functional as dilute Fermi gas with $t_i \leftrightarrow C_i$
  - equivalent $a_0 \approx -2\text{--}3$ fm but $|k_F a_p|, |k_F r_0| < 1$ (with $a_p < 0$)
  - missing non-analytic terms, NNN, ...
Power Counting Terms in Energy Functionals

- Scale contributions according to average density or $\langle k_F \rangle$

- Reasonable estimates $\Rightarrow$ truncation errors understood
- Where to truncate for nuclei?
Covariant DFT as Legendre Transformation

- To probe the system, add a source $V^\mu(x)$ coupled to current operator $\hat{j}^\mu(x) \equiv \overline{\psi}(x) \gamma^\mu \psi(x)$ to the partition function:

$$Z[V] = e^{-W[V]} \sim \text{Tr} \ e^{-\beta(\hat{H} + V \cdot \hat{j})} \rightarrow \int \mathcal{D}[\psi^\dagger] \mathcal{D}[\psi] \ e^{-\int [\mathcal{L} + V_\mu \overline{\psi} \gamma^\mu \psi]}$$

- The (time-dependent) current $j^\mu(x)$ in presence of $V^\mu(x)$ is

$$j^\mu(x) = (\rho_V(x), j_V(x)) \equiv \langle \overline{\psi}(x) \gamma^\mu \psi(x) \rangle_V = \frac{\delta W[V]}{\delta V_\mu(x)}$$

- Invert to find $V^\mu[j]$ and Legendre transform from $V^\mu$ to $j^\mu$:

$$\Gamma[j] = -W[V] + \int V \cdot j \quad \text{with} \quad V^\mu(x) = \frac{\delta \Gamma[j]}{\delta j_\mu(x)} \quad \Rightarrow \quad \frac{\delta \Gamma[j]}{\delta j_\mu(x)} \bigg|_{j_{gs}(x)} = 0$$

$$\Rightarrow \text{For static } j^\mu(x), \ \Gamma[j] \propto \text{the DFT energy functional } E[\rho_V]$$
What About the Scalar Density?

- Can add additional sources and Legendre transformations
- In nonrelativistic DFT, add to Lagrangian \( + \eta(x) \nabla \psi \dagger \nabla \psi \)

\[
\Gamma[\rho, \tau] = W[J, \eta] - \int J(x) \rho(x) - \int \eta(x) \tau(x)
\]

\( \implies \) Skyrme HF energy functional \( E[\rho, \tau, J] \) of density and kinetic energy density (see A. Bhattacharyya talk)

- In covariant DFT, add to Lagrangian \( + S(x) \overline{\psi} \psi \)

\[
\Gamma[j^\mu, \rho_s] = W[V^\mu, S] - \int V(x) \cdot j(x) - \int S(x) \rho_s(x)
\]

\( \implies \) RMF energy functional \( E[\rho_v, \rho_s] \) [with \( j^\mu = (\rho_v, 0) \)]

- Generates *point-coupling* functional
Pairing in DFT/EFT from Effective Action

- Natural framework for spontaneous symmetry breaking
  - e.g., test for zero-field magnetization $M$ in a spin system
  - introduce an external field $H$ to break rotational symmetry
  - Legendre transform Helmholtz free energy $F(H)$:

\[
\text{invert } M = -\frac{\partial F(H)}{\partial H} \implies \Gamma[M] = F[H(M)] + MH(M)
\]

- since $H = \frac{\partial \Gamma}{\partial M}$, minimize $\Gamma$ to find ground state

![Diagram of magnetic states](image-url)
Generalizing Effective Action to Include Pairing

- Generating functional with sources $J, j$ coupled to densities:

$$Z[J, j] = e^{-W[J, j]} = \int D(\psi^\dagger \psi) e^{-\int d^4x \left[ \mathcal{L} + J(x)\psi_\alpha^\dagger \psi_\alpha + j(x)(\psi_\uparrow^\dagger \psi_\downarrow^\dagger + \psi_\downarrow \psi_\uparrow) \right]}$$

- Densities found by functional derivatives wrt $J, j$:

$$\rho(x) \equiv \langle \psi^\dagger(x)\psi(x) \rangle_{J, j} = \left. \frac{\delta W[J, j]}{\delta J(x)} \right|_j$$

$$\phi(x) \equiv \langle \psi_\uparrow^\dagger(x)\psi_\downarrow^\dagger(x) + \psi_\downarrow(x)\psi_\uparrow(x) \rangle_{J, j} = \left. \frac{\delta W[J, j]}{\delta j(x)} \right|_j$$
Generalizing Effective Action to Include Pairing

- Generating functional with sources $J, j$ coupled to densities:

$$Z[J, j] = e^{-W[J,j]} = \int D(\psi^\dagger, \psi) e^{-\int d^4x \left[ \mathcal{L} + J(x)\psi_\alpha\bar{\psi}_\alpha + j(x)(\psi_\uparrow^\dagger \psi_\downarrow^\dagger + \psi_\downarrow \psi_\uparrow) \right]}$$

- Densities found by functional derivatives wrt $J, j$:

$$\rho(x) \equiv \langle \psi^\dagger(x)\psi(x) \rangle_{J,j} = \frac{\delta W[J,j]}{\delta J(x)} \bigg|_j$$

$$\phi(x) \equiv \langle \psi_\uparrow^\dagger(x)\psi_\downarrow^\dagger(x) + \psi_\downarrow(x)\psi_\uparrow(x) \rangle_{J,j} = \frac{\delta W[J,j]}{\delta j(x)} \bigg|_j$$

- Effective action $\Gamma[\rho, \phi]$ by functional Legendre transformation:

$$\Gamma[\rho, \phi] = W[J,j] - \int d^4x J(x)\rho(x) - \int d^4x j(x)\phi(x)$$
\( \Gamma[\rho, \phi] \propto \text{ground-state (free) energy functional } E[\rho, \phi] \)

- at finite temperature, the proportionality constant is \( \beta \)
- The sources are given by functional derivatives wrt \( \rho \) and \( \phi \)

\[
\frac{\delta E[\rho, \phi]}{\delta \rho(x)} = J(x) \quad \text{and} \quad \frac{\delta E[\rho, \phi]}{\delta \phi(x)} = j(x)
\]

- but the sources are zero in the ground state
- \( \implies \) determine ground-state \( \rho(x) \) and \( \phi(x) \) by stationarity:

\[
\left. \frac{\delta E[\rho, \phi]}{\delta \rho(x)} \right|_{\rho=\rho_{\text{gs}}, \phi=\phi_{\text{gs}}} = \left. \frac{\delta E[\rho, \phi]}{\delta \phi(x)} \right|_{\rho=\rho_{\text{gs}}, \phi=\phi_{\text{gs}}} = 0
\]

- This is Hohenberg-Kohn DFT extended to pairing!
- \Gamma[\rho, \phi] \propto \text{ground-state (free) energy functional } E[\rho, \phi]
  - at finite temperature, the proportionality constant is \beta

- The sources are given by functional derivatives wrt \rho and \phi

\[
\frac{\delta E[\rho, \phi]}{\delta \rho(x)} = J(x) \quad \text{and} \quad \frac{\delta E[\rho, \phi]}{\delta \phi(x)} = j(x)
\]

- but the sources are zero in the ground state

- \implies determine ground-state \rho(x) and \phi(x) by stationarity:

\[
\frac{\delta E[\rho, \phi]}{\delta \rho(x)} \bigg|_{\rho=\rho_{gs}, \phi=\phi_{gs}} = \frac{\delta E[\rho, \phi]}{\delta \phi(x)} \bigg|_{\rho=\rho_{gs}, \phi=\phi_{gs}} = 0
\]

- This is Hohenberg-Kohn DFT extended to pairing!

- We need a method to carry out the inversion
  - For Kohn-Sham DFT, apply inversion methods
  - We need to renormalize!
Kohn-Sham Inversion Method Revisited

- Order-by-order matching in EFT expansion parameter $\lambda$

\[
W[J, j, \lambda] = W_0[J, j] + \lambda W_1[J, j] + \lambda^2 W_2[J, j] + \cdots
\]

\[
J[\rho, \phi, \lambda] = J_0[\rho, \phi] + \lambda J_1[\rho, \phi] + \lambda^2 J_2[\rho, \phi] + \cdots
\]

\[
j[\rho, \phi, \lambda] = j_0[\rho, \phi] + \lambda j_1[\rho, \phi] + \lambda^2 j_2[\rho, \phi] + \cdots
\]

\[
\Gamma[\rho, \phi, \lambda] = \Gamma_0[\rho, \phi] + \lambda \Gamma_1[\rho, \phi] + \lambda^2 \Gamma_2[\rho, \phi] + \cdots
\]

- $0^{\text{th}}$ order is Kohn-Sham system with potentials $J_0(x)$ and $j_0(x)$

$\implies$ yields the exact densities $\rho(x)$ and $\phi(x)$

- introduce single-particle orbitals and solve (cf. HFB)

\[
\begin{pmatrix}
    h_0(x) - \mu_0 & j_0(x) \\
    j_0(x) & -h_0(x) + \mu_0
\end{pmatrix}
\begin{pmatrix}
    u_i(x) \\
    v_i(x)
\end{pmatrix} = E_i
\begin{pmatrix}
    u_i(x) \\
    v_i(x)
\end{pmatrix}
\]

where

\[
h_0(x) \equiv -\frac{\nabla^2}{2M} + V(x) - J_0(x)
\]

with conventional orthonormality relations for $u_i, v_i$
Diagrammatic Expansion of $W_i$

- Same diagrams, but with Nambu-Gor’kov Green’s functions

\[
\Gamma_{\text{int}} = \sum_{\text{diagrams}} + \sum_{\text{diagrams}} + \sum_{\text{diagrams}} + \sum_{\text{diagrams}} + \cdots
\]

\[
iG = \begin{pmatrix}
\langle T \psi_\uparrow(x) \psi_\uparrow^\dagger(x') \rangle_0 & \langle T \psi_\uparrow(x) \psi_\downarrow(x') \rangle_0 \\
\langle T \psi_\downarrow^\dagger(x) \psi_\uparrow^\dagger(x') \rangle_0 & \langle T \psi_\downarrow^\dagger(x) \psi_\downarrow(x') \rangle_0
\end{pmatrix} \equiv \begin{pmatrix}
iG_{ks}^0 & iF_{ks}^0 \\
iF_{ks}^0 \dagger & -iG_{ks}^0
\end{pmatrix}
\]

- In frequency space, the Green’s functions are

\[
iG_{ks}^0(x, x'; \omega) = \sum_i \left[ \frac{u_i(x)}{\omega - E_i + i\eta} \frac{u_i^*(x')}{\omega - E_i + i\eta} + \frac{v_i(x')}{\omega + E_i - i\eta} \frac{v_i^*(x)}{\omega + E_i - i\eta} \right]
\]

\[
iF_{ks}^0(x, x'; \omega) = -\sum_i \left[ \frac{u_i(x)}{\omega - E_i + i\eta} \frac{v_i(x')}{\omega + E_i - i\eta} - \frac{u_i(x')}{\omega - E_i + i\eta} \frac{v_i^*(x)}{\omega + E_i - i\eta} \right]
\]
Kohn-Sham Self-Consistency Procedure

- Same iteration procedure as in Skyrme or RMF with pairing
- In terms of the orbitals, the fermion density is
  \[ \rho(x) = 2 \sum_i |v_i(x)|^2 \]
  and the pair density is (warning: divergent!)
  \[ \phi(x) = \sum_i [u_i^*(x)v_i(x) + u_i(x)v_i^*(x)] \]
- The chemical potential \( \mu_0 \) is fixed by \( \int \rho(x) = A \)
- Diagrams for \( \tilde{\Gamma} [\rho, \phi] = -E [\rho, \phi] \) (with LDA+) yields KS potentials
  \[ J_0(x) \bigg|_{\rho=\rho_{gs}} = \frac{\delta \tilde{\Gamma}_{\text{int}} [\rho, \phi]}{\delta \rho(x)} \bigg|_{\rho=\rho_{gs}} \]
  and
  \[ j_0(x) \bigg|_{\phi=\phi_{gs}} = \frac{\delta \tilde{\Gamma}_{\text{int}} [\rho, \phi]}{\delta \phi(x)} \bigg|_{\phi=\phi_{gs}} \]
Outline

Overview: Microscopic DFT

Effective Actions and DFT

Issues and Ideas and Open Problems

Summary
Questions about DFT and Nuclear Structure

- How do we connect to the free NN· · · N interaction?
  - Chiral EFT $\xrightarrow{RG}$ low-momentum interactions: Power counting?

- What can you calculate in a DFT approach?
  - What about single-particle properties? Excited states?

- How is Kohn-Sham DFT more than “mean field”?
  - Where are the approximations? How do we truncate?
  - How do we include long-range effects (correlations)?

- What about broken symmetries? (translation, rotation, . . . )
- What about the “Dirac sea” in covariant DFT?
- What about UV divergences in DFT pairing?
  - Can we (should we) decouple $pp$ and $ph$?
  - Are higher-order contributions important?
Questions about DFT and Nuclear Structure

- How do we connect to the free NN····N interaction?
  - Chiral EFT $^{RG}$ low-momentum interactions: Power counting?

- What can you calculate in a DFT approach?
  - What about single-particle properties? Excited states?

- How is Kohn-Sham DFT more than “mean field”?
  - Where are the approximations? How do we truncate?
  - How do we include long-range effects (correlations)?

- What about broken symmetries? (translation, rotation, . . . )

- What about the “Dirac sea” in covariant DFT?

- What about UV divergences in DFT pairing?
  - Can we (should we) decouple $pp$ and $ph$?
  - Are higher-order contributions important?
How is the Full $G$ Related to $G_{ks}$? [nucl-th/0410105]
How is the Full $G$ Related to $G_{KS}$? [nucl-th/0410105]

Add a non-local source $\xi(x', x)$ coupled to $\psi(x)\psi^\dagger(x')$:

$$Z[J, \xi] = e^{iW[J; \xi]} = \int D\psi D\psi^\dagger e^{i \int d^4x \left[ L + J(x)\psi^\dagger(x)\psi(x) + \int d^4x' \psi(x)\xi(x, x')\psi^\dagger(x') \right]}$$
How is the Full $G$ Related to $G_{KS}$? [nucl-th/0410105]

- Add a non-local source $\xi(x', x)$ coupled to $\psi(x)\psi^\dagger(x')$:

$$Z[J, \xi] = e^{iW[J; \xi]} = \int D\psi D\psi^\dagger e^{i \int d^4x [L + J(x)\psi^\dagger(x)\psi(x) + \int d^4x' \psi(x)\xi(x, x')\psi^\dagger(x')]}$$

- With $\Gamma[\rho, \xi] = \Gamma_0[\rho, \xi] + \Gamma_{\text{int}}[\rho, \xi]$,

$$G(x, x') = \left. \frac{\delta W}{\delta \xi} \right|_J = \left. \frac{\delta \Gamma}{\delta \xi} \right|_\rho = G_{KS}(x, x') + G_{KS} \left[ \frac{1}{i} \frac{\delta \Gamma_{\text{int}}}{\delta G_{KS}} + \frac{\delta \Gamma_{\text{int}}}{\delta \rho} \right] G_{KS}$$

Dick Furnstahl  
DFT from Effective Actions
Claim: $\rho_{ks}(x) = -i\nu G^{0}_{ks}(x, x^+) \text{ equals } \rho(x) = -i\nu G(x, x^+)$

Start with

$G = G_{ks} + G'_{ks} + \Sigma'_{ks} + G_{ks}$
G and $G_{ks}$ Yield the Same Density by Construction

- **Claim:** $\rho_{ks}(x) = -i\nu G^0_{ks}(x, x^+) = -i\nu G(x, x^+)$

- **Start with**

- **Simple diagrammatic demonstration:**

- **Densities agree by construction!**
G and $G_{ks}$ Yield the Same Density by Construction

Claim: $\rho_{ks}(x) = -i\nu G_{KS}^0(x, x^+) = \rho(x) = -i\nu G(x, x^+)$

Start with

Simple diagrammatic demonstration:

Densities agree by construction!

Is the Kohn-Sham basis a useful one for $G$?
How Close is $G_{KS}$ to $G$?

- It depends on what sources are used!

$$G(x, x') = \left. \frac{\delta W}{\delta \xi} \right|_J = \left. \frac{\delta \Gamma}{\delta \xi} \right|_\rho = G_{ks}(x, x') + G_{ks} \left[ \frac{1}{i} \frac{\delta \Gamma_{\text{int}}}{\delta G_{ks}} + \frac{\delta \Gamma_{\text{int}}}{\delta \rho} \right] G_{ks}$$

- Nonrel. $M^*$ in $\Gamma[\rho]$ vs. $\Gamma[\rho, \tau]$ vs. $\cdots$ (see Anirban’s talk)

- Covariant case at LO: $\Gamma[\rho_v]$ vs. $\Gamma[\rho_v, \rho_s]$

- Higher orders?
Questions about DFT and Nuclear Structure

- How do we connect to the free NN⋯N interaction?
  - Chiral EFT \( RG \) low-momentum interactions: Power counting?

- What can you calculate in a DFT approach?
  - What about single-particle properties? Excited states?

- How is Kohn-Sham DFT more than “mean field”?
  - Where are the approximations? How do we truncate?
  - How do we include long-range effects (correlations)?

- What about broken symmetries? (translation, rotation, . . .)

- What about the “Dirac sea” in covariant DFT?

- What about UV divergences in DFT pairing?
  - Can we (should we) decouple \( pp \) and \( ph \)?
  - Are higher-order contributions important?
Kohn-Sham DFT and “Mean-Field” Models

1. Kohn-Sham propagator *always* has “mean-field” structure
   \[ \implies \text{doesn’t mean that correlations aren’t included in } \Gamma[\rho]! \]

2. \[ n(k) = \langle a_k^\dagger a_k \rangle \] is resolution dependent (not observable!)
   \[ \implies \text{operator related to experiment is more complicated} \]

3. Is the Kohn-Sham basis a useful one for other observables?
Approximating and Fitting the Functional

- Need a truncated expansion to carry out inversion method
  - Chiral EFT expansion is well-defined
  - Power counting for low-momentum interactions?

- Gradient expansions?
  - Density matrix expansion
  - Semiclassical expansions used in Coulomb DFT
  - Derivative expansion techniques developed for (one-loop) effective actions?

- How should we “fine tune” a DFT functional?
  - What does EFT say about what knobs to adjust?
  - EFT tells about theoretical errors
    $\Rightarrow$ use in fits (e.g., Bayesian)
Long-range Effects

- Long-range forces (e.g., pion exchange) $\implies$ limits of DME++

\[ J_0(x) = - \quad \text{[diagram]} \quad + \quad \text{[diagram]} \quad + \cdots \]

- Non-localities from near-on-shell particle-hole excitations

\[ \quad \text{[diagram]} \quad + \quad \text{[diagram]} \quad + \quad \text{[diagram]} \quad + \quad \text{[diagram]} \quad + \cdots \]
Questions about DFT and Nuclear Structure

- How do we connect to the free NN⋯N interaction?
  - Chiral EFT $\overset{RG}\rightarrow$ low-momentum interactions: Power counting?

- What can you calculate in a DFT approach?
  - What about single-particle properties? Excited states?

- How is Kohn-Sham DFT more than “mean field”?
  - Where are the approximations? How do we truncate?
  - How do we include long-range effects (correlations)?

- What about broken symmetries? (translation, rotation, . . .)

- What about the “Dirac sea” in covariant DFT?

- What about UV divergences in DFT pairing?
  - Can we (should we) decouple $pp$ and $ph$?
  - Are higher-order contributions important?
Symmetry Breaking and Zero Modes

- What about breaking of translational, rotational invariance, particle number?
- No guidance from Coulomb DFT (?)
- Effective action $\Rightarrow$ zero modes
  - cf. soliton zero modes and projection methods
  - Fadeev-Popov games?
- Energy functional for the intrinsic density?
  $\Rightarrow$ J. Engel: one-dimensional laboratory
Questions about DFT and Nuclear Structure

- How do we connect to the free NN⋯N interaction?
  - Chiral EFT $\xrightarrow{\text{RG}}$ low-momentum interactions: Power counting?

- What can you calculate in a DFT approach?
  - What about single-particle properties? Excited states?

- How is Kohn-Sham DFT more than “mean field”?
  - Where are the approximations? How do we truncate?
  - How do we include long-range effects (correlations)?

- What about broken symmetries? (translation, rotation, . . .)

- What about the “Dirac sea” in covariant DFT?

- What about UV divergences in DFT pairing?
  - Can we (should we) decouple $pp$ and $ph$?
  - Are higher-order contributions important?
UV Divergences in Nonrelativistic and Relativistic Effective Actions

- All low-energy effective theories have incorrect UV behavior
- Sensitivity to short-distance physics signalled by divergences but finiteness (e.g., with cutoff) doesn’t mean not sensitive! ⇒ must absorb (and correct) sensitivity by renormalization
- Instances of UV divergences

<table>
<thead>
<tr>
<th>nonrelativistic</th>
<th>covariant</th>
</tr>
</thead>
<tbody>
<tr>
<td>scattering</td>
<td>scattering</td>
</tr>
<tr>
<td>pairing</td>
<td>pairing</td>
</tr>
<tr>
<td></td>
<td>anti-nucleons</td>
</tr>
</tbody>
</table>
Power Counting Lost / Power Counting Regained

- Gasser, Sainio, Svarc $\rightarrow$ ChPT for $\pi N$ with relativistic $N$'s
  - loop and momentum expansions don’t agree
    $\rightarrow$ systematic power counting lost
  - heavy-baryon EFT restores power counting by $1/M$ expansion
- Hua-Bin Tang (1996) [and with Paul Ellis]:
  
  “... EFT’s permit useful low-energy expansions only if we absorb all of the hard-momentum effects into the parameters of the Lagrangian.”

- Becher/Leutwyler IR $\rightarrow$ Schindler-Gegelia-Scherer version
Moving Dirac Sea Physics into Coefficients

- Absorb the “hard” part of a diagram into parameters, \( \implies \) the remaining “soft” part satisfies chiral power counting
  - original \( \pi N \) prescription by H.B. Tang (expand, integrate term-by-term, and resum propagators)
  - systematized for \( \pi N \) by Becher and Leutwyler: “infrared regularization” or IR
  - not unique; e.g., Fuchs et al. additional finite subtractions in DR
- Extension of IR to multiple heavy particles [Lehmann/Prézeau]
  - convenient reformulation by Schindler, Gegelia, Scherer
  - tadpoles, \( N\bar{N} \) loops in free space vanish!
  - particle-particle loop reduces to nonrelativistic DR/MS result
Consequences for Free-Space Natural Fermions

- Tadpoles, $N\overline{N}$ loops in free space vanish!
- Leading order (LO) has scalar, vector, etc. vertices

\[ L_{\text{eft}} = \cdots - \frac{C_s}{2} (\overline{\psi} \psi)(\overline{\psi} \psi) - \frac{C_v}{2} (\overline{\psi} \gamma^\mu \psi)(\overline{\psi} \gamma^\mu \psi) + \cdots \Rightarrow \]

- At NLO, only particle-particle loop survives IR

- Only forward-going nucleons contribute
  \[ \Rightarrow \text{same scattering amplitude as nonrel. DR/MS for small } k \]
Comments on Vacuum Physics

- Unlike QED DFT, “no sea” for nuclear structure is a misnomer
  - include “vacuum physics” in coefficients via renormalization

- Renormalization versus Renormalizability
  - Renormalization is required to account for short-distance behavior but can be implicit
  - Renormalizability at the hadronic level corresponds to making a model for the short-distance behavior
    - not a good model phenomenologically
    - Please don’t send me any more RHA papers to referee!

- Fixing short-distance behavior is not the same thing as throwing away negative-energy states

- For a long time, we looked for *unique* “relativistic effects”; these were largely misguided efforts
Questions about DFT and Nuclear Structure

- How do we connect to the free NN· · · N interaction?
  - Chiral EFT $\xrightarrow{\text{RG}}$ low-momentum interactions: Power counting?

- What can you calculate in a DFT approach?
  - What about single-particle properties? Excited states?

- How is Kohn-Sham DFT more than “mean field”?
  - Where are the approximations? How do we truncate?
  - How do we include long-range effects (correlations)?

- What about broken symmetries? (translation, rotation, . . .)

- What about the “Dirac sea” in covariant DFT?

- What about UV divergences in DFT pairing?
  - Can we (should we) decouple $pp$ and $ph$?
  - Are higher-order contributions important?
UV Divergences in Nonrelativistic and Relativistic Effective Actions

- All low-energy effective theories have incorrect UV behavior
- Sensitivity to short-distance physics signalled by divergences but finiteness (e.g., with cutoff) doesn’t mean not sensitive! $\implies$ must absorb (and correct) sensitivity by renormalization
- Instances of UV divergences

<table>
<thead>
<tr>
<th>nonrelativistic</th>
<th>covariant</th>
</tr>
</thead>
<tbody>
<tr>
<td>scattering</td>
<td>scattering</td>
</tr>
<tr>
<td>pairing</td>
<td>pairing</td>
</tr>
<tr>
<td>anti-nucleons</td>
<td>anti-nucleons</td>
</tr>
</tbody>
</table>
Divergences: Dilute Fermi System

- Generating functional with constant sources $\mu$ and $j$:

$$e^{-W} = \int D(\psi^\dagger \psi) e^{-\int d^4x \left[ \psi^\dagger_\alpha \left( \frac{\partial}{\partial \tau} - \frac{\nabla^2}{2M} - \mu \right) \psi_\alpha + \frac{c_0}{2} \psi^\dagger_\uparrow \psi^\dagger_\downarrow \psi_\downarrow \psi_\uparrow + j(\psi^\dagger_\uparrow \psi_\downarrow + \psi^\dagger_\downarrow \psi^\dagger_\uparrow) \right]}$$

- cf. adding integration over auxiliary field $\int D(\Delta^* , \Delta) e^{-\frac{1}{|c_0|} \int |\Delta|^2}$

  $\implies$ shift variables to eliminate $\psi^\dagger_\uparrow \psi^\dagger_\downarrow \psi_\downarrow \psi_\uparrow$ for $\Delta^* \psi_\uparrow \psi_\downarrow$

- New divergences because of $j$ $\implies$ e.g., expand to $O(j^2)$

$$W[\mu, j] = \cdots + \underbrace{\times} _ j + \cdots$$

- Same linear divergence as in 2-to-2 scattering
Divergences: Dilute Fermi System

- Generating functional with constant sources $\mu$ and $j$:

$$e^{-W} = \int D(\psi^\dagger, \psi) e^{-\int d^4x \left[\psi^\dagger_\alpha \left(\frac{\partial}{\partial \tau} - \frac{\nabla^2}{2M} - \mu\right)\psi_\alpha + \frac{C_0}{2} \psi_\uparrow^\dagger \psi_\downarrow^\dagger \psi_\downarrow \psi_\uparrow + j(\psi_\uparrow \psi_\downarrow + \psi_\downarrow^\dagger \psi_\uparrow^\dagger) + \frac{1}{2} \zeta j^2\right]}$$

- cf. adding integration over auxiliary field $\int D(\Delta^*, \Delta) e^{-\frac{1}{|C_0|} \int |\Delta|^2}$

$$\implies$$ shift variables to eliminate $\psi_\uparrow^\dagger \psi_\downarrow^\dagger \psi_\downarrow \psi_\uparrow$ for $\Delta^* \psi_\uparrow \psi_\downarrow$

- New divergences because of $j \implies$ e.g., expand to $O(j^2)$

$$W[\mu, j] = \cdots + \begin{array}{c} \times \\ \downarrow j \end{array} + \cdots$$

- Same linear divergence as in 2-to-2 scattering

- Strategy: Add counterterm $\frac{1}{2} \zeta j^2$ to $\mathcal{L}$

  - additive to $W$ (cf. $|\Delta|^2$) $\implies$ no effect on scattering

  - Energy interpretation? Finite part?
To find the energy density, evaluate $\Gamma$ at the stationary point:

$$\frac{E}{V} = (\Gamma_0 + \Gamma_1)|_{j_0 = -\frac{1}{2} |C_0| \phi} = \int \frac{d^3 k}{(2\pi)^3} \left[ \xi_k - E_k + \frac{1}{2} \frac{j_0^2}{E_k} \right] + \left[ \mu_0 - \frac{1}{4} |C_0| \rho \right] \rho$$

with

$$\rho = \int \frac{d^3 k}{(2\pi)^3} \left( 1 - \frac{\xi_k}{E_k} \right) \quad \text{and} \quad \phi = - \int \frac{d^3 k}{(2\pi)^3} \frac{j_0}{E_k} + \zeta^{(0)} j_0$$

- Explicitly finite and dependence on $\zeta^{(0)}$ cancels out
- Finite system $\Rightarrow$ optimize renormalization (see Bulgac et al.)
Higher Order: Induced Interaction

- As $j_0 \to 0$, $u_k v_k$ peaks at $\mu_0$
- Leading order $T = 0$:
  \[
  \Delta_{\text{LO}} / \mu_0 = \frac{8}{e^2} e^{-1/N(0)} |C_0| \\
  = \frac{8}{e^2} e^{-\pi/2k_F} |a_s|
  \]

\[
\Gamma_1 = \sum_k u_k v_k + CTC + \cdots \quad \implies \quad j_1 = \frac{\delta \Gamma_1}{\delta \phi} = \frac{1}{2} |C_0| \phi
\]

- Same renormalization works (Furnstahl/Hammer)
  \[\implies \text{energy interpretation? finite system?}\]
Higher Order: Induced Interaction

- As $j_0 \to 0$, $u_k v_k$ peaks at $\mu_0$
- Leading order $T = 0$:
  \[
  \Delta_{LO}/\mu_0 = \frac{8}{e^2} e^{-1/N(0)}|C_0| \\
  = \frac{8}{e^2} e^{-\pi/2k_F|a_s|}
  \]
- NLO modifies exponent
  $\implies$ changes prefactor
- $\Delta_{NLO} \approx \Delta_{LO}/(4e)^{1/3}$

\[
\Gamma_1 + \Gamma_2 = \sum u_k v_k + \sum u'_k v'_k \implies j_1 + j_2 = \frac{1}{2}|C_0| \left[ 1 - |C_0|\langle \Pi_0 \rangle |k| = |k'| = k_F \right] \phi
\]

- Same renormalization works (Furnstahl/Hammer)
  $\implies$ energy interpretation? finite system?
Outline

Overview: Microscopic DFT

Effective Actions and DFT

Issues and Ideas and Open Problems

Summary
Summary

- Plan: Chiral EFT $\rightarrow$ low momentum $V_{NN}$, $V_{NNN}$, ... $\rightarrow$ DFT for nuclei
- Effective action formalism provides framework
- Many issues to resolve (my list for today)
  - gradient expansions (DME++, ...), long-range effects
  - isospin dependence, many-body contributions, low-density limit
  - symmetry breaking and restoration
  - higher-order pairing
  - how to fine-tune?
  - systematic covariant DFT
  - ...
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_\Lambda | \psi_d \rangle$ for $\Lambda = 2.0 \text{ fm}^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_\Lambda | \psi_d \rangle$ for $\Lambda = 1.8$ fm$^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_\Lambda | \psi_d \rangle$ for $\Lambda = 1.6 \text{ fm}^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_\Lambda | \psi_d \rangle$ for $\Lambda = 1.4$ fm$^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 1.2 \text{ fm}^{-1}$
The Deuteron at Different Resolutions

Integrand of $-\langle \psi_d | V_{\Lambda} | \psi_d \rangle$ for $\Lambda = 1.0 \text{ fm}^{-1}$
Effective Action as Energy Functional: Minkowski

See, e.g., Weinberg, Vol. II
Polonyi-Schwenk RG Approach to DFT

Non-interacting fermions in background mean-field potential \( V \) at \( \lambda = 0 \)

Gradually switch off background potential and turn on the microscopic interaction \( U \) as \( \lambda \rightarrow 1 \)

\[
S_{\lambda,1}[\psi^\dagger, \psi] = \int dx \psi_\alpha^\dagger(x) \left( \frac{\partial}{\partial t} - \frac{\nabla_x^2}{2M} + (1 - \lambda) V_{\lambda;\alpha}(x) \right) \psi_\alpha(x)
\]

\[
S_{\lambda,2}[\psi^\dagger, \psi] = \frac{\lambda}{2} \int \int (\psi^\dagger \psi) \cdot U \cdot (\psi^\dagger \psi)
\]
Effective action $\Gamma[\rho] = -W[J] + J \cdot \rho$ is minimal at the physical (zero source) ground state density:

$$\left. \frac{\delta \Gamma[\rho]}{\delta \rho} \right|_{\rho_{gs}} = 0 \quad \Rightarrow \quad E_{gs} = E[\rho_{gs}] = \lim_{\beta \to \infty} \frac{1}{\beta} \Gamma[\rho_{gs}]$$

Curvature will include correlations

$$\left( \left. \frac{\delta^2 \Gamma[\rho]}{\delta \rho \delta \rho} \right|_{\rho_{gs}} \right)^{-1} = \left. \frac{\delta^2 W[J]}{\delta J \delta J} \right|_{J=0} = \text{interactions}$$
Evolution of Effective Action with Parameter $\lambda$

$\Delta$ background \quad \text{Hartree} \quad \text{exchange-correlations}$

$$\partial_\lambda \Gamma_\lambda[\rho] = \partial_\lambda [(1 - \lambda) V_\lambda] \cdot \rho + \frac{1}{2} \rho \cdot U \cdot \rho + \frac{1}{2} \text{Tr} \left[ U \cdot \left( \frac{\delta^2 \Gamma_\lambda[\rho]}{\delta \rho \delta \rho} \right)^{-1} \right]$$

Expand density functional about evolving ground-state density

$$\Gamma_\lambda[\rho] = \Gamma[\rho_{gs,\lambda}]^{(0)} + \sum_{n \geq 2} \int \cdots \int \frac{1}{n!} \Gamma[\rho_{gs,\lambda}]^{(n)} \cdot (\rho - \rho_{gs,\lambda})_1 \cdots (\rho - \rho_{gs,\lambda})_n$$

Evolution equations for expansion coefficients build up correlations through dressed ph propagator
Auxiliary Fields [Faussurier]

- Introduce scalar field $\varphi$ coupled to $\psi^\dagger \psi$
- Construct $\tilde{S}[\psi^\dagger, \psi, \varphi]$ such that $\psi, \psi^\dagger$ is only in $\psi^\dagger [G^{-1}(\varphi)] \psi$ and
  \[ \int \mathcal{D}\varphi \; e^{i\tilde{S}[\psi^\dagger, \psi, \varphi]} \rightarrow e^{iS[\psi^\dagger, \psi]} \]
- Integrate out $\psi^\dagger \psi \rightarrow$ determinant $\rightarrow \text{Tr} \ln[G^{-1}(\varphi)] + \cdots$
- Keep only leading saddle point $\varphi_0(x) \rightarrow$ Hartree
  - fluctuation corrections generate loop expansion
  - freedom to choose mean field [Kerman et al. (1983)]
    cf., $H = (T + U) + (V - U)$ for arbitrary $U$
- Kohn-Sham: choose special saddle-point evaluation
  - reference local potential $\phi_{xc}$ such that $-\text{Tr} \; G_{xc}(x, x^+) = n(x)$
  - expand $\text{Tr} \ln[G_{xc}^{-1} + \delta \phi]$ in $\delta \phi = \phi - \phi_{xc}$
    $\rightarrow \Gamma_{xc}[n]$ with $\phi_{xc}(x) = \delta \Gamma_{xc}[n] / \delta n(x)$
  - introduce orbitals $\{\psi_\alpha, \epsilon_\alpha\}$ to diagonalize $\text{Tr} \ln[G_{xc}^{-1}]$
Dominant application: inhomogeneous electron gas
Interacting point electrons in static potential of atomic nuclei
"Ab initio" calculations of atoms, molecules, crystals, surfaces, . . .
HF is good starting point, DFT/LSD is better, DFT/GGA is better still, . . .

Atomization Energies of Hydrocarbon Molecules

% deviation from experiment

Hartree-Fock
DFT Local Spin Density Approximation
DFT Generalized Gradient Approximation

H2 C2 C2H2 CH4 C2H4 C2H6 C6H6
molecule
-100
-80
-60
-40
-20
0
20
% deviation from experiment

H2 C2 C2H2 CH4 C2H4 C2H6 C6H6
molecule

Hartree-Fock
DFT Local Spin Density Approximation
DFT Generalized Gradient Approximation
$^3S_1$ deuteron w.f.

\[ \psi(r) \mid \text{fm}^{-3/2} \]

\[ |\psi_0(k)| \mid \text{fm}^{3/2} \]

- Repulsive core $\Rightarrow$ short-distance suppression
- Low-momentum potential $\Rightarrow$ much simpler wave function!
$^3S_1$ deuteron w.f.

\begin{align*}
|\psi_0(k)| & \text{ [fm}^{\frac{3}{2}}\text{]} \\
& \text{for} \Lambda = 2 \text{ fm}^{-1} \\
& \text{for} \Lambda = 3 \text{ fm}^{-1} \\
& \text{for} \Lambda = 4 \text{ fm}^{-1} \\
& \text{Argonne v}_{18} 
\end{align*}

Repulsive core $\Rightarrow$ short-distance suppression $\Rightarrow$ high-momentum components

Low-momentum potential $\Rightarrow$ much simpler wave function!
\(^1S_0\) at \(k_F = 1.35 \text{ fm}^{-1}\)

\([P = 0, k = 0.1 \text{ fm}^{-1}, m^*/m = 1]\)
$^3S_1$ at $k_F = 1.35$ fm$^{-1}$

$[P = 0, k = 0.1$ fm$^{-1}, m^*/m = 1]$
Scale contributions according to average density or $\langle kF \rangle$.

Reasonable estimates $\Rightarrow$ truncation errors understood.

Where to truncate for nuclei?