Overview of the Majorana Experiment

Jason Detwiler
University of Washington
Double Beta Decay

The diagram illustrates the process of double beta decay, where a nucleus $^{A}Z_{N}$ decays into a nucleus $^{A}Z_{N+2}$, emitting two electrons e^{-} and two antineutrinos $\bar{\nu}_{e}$.

The graph shows the distribution of summed beta energies in arbitrary units, with a peak around 1.5 MeV and a spread of energies from 0 to 2 MeV.
Double Beta Decay

\[\Gamma^{0\nu} = G_{0\nu}^0 \left| M_{0\nu}^0 \right|^2 \left\langle m_\nu \right\rangle^2 \]
\[76^{\text{Ge}} \]

\[2^- \]

\[76^{\text{As}} \]

\[\beta \beta \]

\[Q = 2.039 \text{ MeV} \]

\[0^+ \]

\[76^{\text{Ge}} \]

\[0^+ \]

\[2^+ \]

\[76^{\text{Se}} \]
Germanium Semiconductors

- Source = Detector
- Excellent Resolution: ~0.2%

\[G^{0\nu} = 0.30 \times 10^{-25} \text{ y}^{-1} \text{ eV}^{-2} \] [1]
\[M^{0\nu} = 1.5 - 2.4 \] [2]
\[T_{1/2}^{2\nu} = (1.3 \pm 0.1) \times 10^{21} \text{ y} \] [3]

Recent 76Ge Results

IGEX

D. Gonzales et al.,
Recent 76Ge Results

Heidelberg-Moscow

35.5 kg y: $T_{1/2}^{0v} > 1.9 \times 10^{25}$ (90% C.L.)

H.V. Klapdor-Kleingrothaus et al.,

D. Gonzales et al.,
Recent 76Ge Results

IGEX

116.75 mole year - 8.87 kg·year in 76Ge

Complete data set: $T_{1/2}^{0\nu} > 1.13 \times 10^{25}$ yr (90% CL)

Reduced data set: $T_{1/2}^{0\nu} > 1.57 \times 10^{25}$ yr (90% CL)

D. Gonzales et al.,

Heidelberg-Moscow

35.5 kg y: $T_{1/2}^{0\nu} > 1.9 \times 10^{25}$ (90% C.L.)

H.V. Klapdor-Kleingrothaus et al.,

KKDC

71.7 kg y

$T_{1/2}^{0\nu} = 1.2^{+3.0}_{-0.5} \times 10^{25}$ yr

$\langle m_{\nu} \rangle = 0.44^{+0.14}_{-0.20}$ eV

significance: 4.2 σ

H.V. Klapdor-Kleingrothaus et al.,
Goals for a Next-Generation 76Ge Experiment

- Sensitivity to quasi-degenerate hierarchy
- $O(200 \text{ kg})$ active material
- Backgrounds on order 1 event per ton-year
- Test KKDC
- Scalable for sensitivity to inverted hierarchy
- $O(1 \text{ ton})$ active material
- Backgrounds on order 0.1 events per ton-year
The Majorana Collaboration

Brown University, Providence, Rhode Island
Michael Attisha, Rick Gaitskell, John-Paul Thompson

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Igor Vanushin, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia

Lawrence Berkeley National Laboratory, Berkeley, California
Yuen-Dat Chan, Mario Cromaz, Martina Descovich, Paul Fallon, Brian Fujikawa, Bill Goward, Reyco Henning, Donna Hurley, Kevin Lesko, Paul Luke, Augusto O. Macchiavelli, Akbar Mokhtarani, Alan Poon, Gersende Prior, Al Smith, Craig Tull

Lawrence Livermore National Laboratory, Livermore, California
Dave Campbell, Kai Vetter

Los Alamos National Laboratory, Los Alamos, New Mexico

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Cyrus Baktash, Jim Beene, Fred Bertrand, Thomas V. Cianciolo, David Radford, Krzysztof Rykaczewski

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi

Pacific Northwest National Laboratory, Richland, Washington

Queen's University, Kingston, Ontario
Marie Di Marco, Aksel Hallin, Art McDonald

Triangle Universities Nuclear Laboratory, Durham, North Carolina and Physics Departments at Duke University and North Carolina State University
Henning Back, James Esterline, Jeremy Kephart, Mary Kidd, Werner Tornow, Albert Young

University of Chicago, Chicago, Illinois
Juan Collar

University of South Carolina, Columbia, South Carolina
Frank Avignone, Richard Creswick, Horatio A. Farach, Todd Hossbach, George King

University of Tennessee, Knoxville, Tennessee
William Bugg, Yuri Efremenko

University of Washington, Seattle, Washington
John Amsbaugh, Tom Burritt, Jason Detwiler, Peter J. Doe, Joe Formaggio, Mark Howe, Rob Johnson, Kareem Kazkaz, Michael Marino, Sean McGee, Dejan Nilic, R. G. Hamish Robertson, Alexis Schubert, John F. Wilkerson
Majorana Reference Design: M180

- 180 kg detector of 86% enriched 76Ge
- 171 crystals in three 57-crystal modules
- Deep site: > 5000 mwe overburden (e.g. SNOLab)
- Background goal: 1 event per ton-year in the ROI
- Sensitivity after 3 live-years:

$$T_{1/2}^{0\nu} > 5.6 \times 10^{26}\text{ y (90% C.L.)}$$
$$\langle m_{\nu} \rangle < 100\text{ meV (using } M^{0\nu} = 2.4)$$
57-Crystal Module

- Vacuum jacket
- Cold plate
- Cold finger
- Thermal shroud
- Bottom closure

Crystal Stack

- Cap
- Tube (0.007” thick)
- 76% enriched HPGe crystal 1.1 kg (62mm x 70mm)
- Tray (plastic, Si, etc.)
Majorana Reference Design: M180

- Veto shield
- Sliding Monolith
- LN Dewar
- Inner shield
- 57-crystal modules
Backgrounds

<table>
<thead>
<tr>
<th>Background Source</th>
<th>Gross and Net Rates for Important Isotopes</th>
<th>Total Est. Background (per t-y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Counts in ROI per t-y</td>
<td>Counts in ROI</td>
</tr>
<tr>
<td></td>
<td>^{68}Ge</td>
<td>^{60}Co</td>
</tr>
<tr>
<td>Germanium (100 day exp)</td>
<td>Gross</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.01</td>
</tr>
<tr>
<td>Inner Mount</td>
<td>Gross</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.01</td>
</tr>
<tr>
<td>Cryostat</td>
<td>Gross</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.22</td>
</tr>
<tr>
<td>Copper Shield</td>
<td>Gross</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.64</td>
</tr>
<tr>
<td>Small Parts</td>
<td>Gross</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.02</td>
</tr>
<tr>
<td>External Sources (6000 mwe)</td>
<td>Gross</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.003</td>
</tr>
<tr>
<td>$2\nu\beta\beta$ decay</td>
<td>< 0.01</td>
<td>TOTAL SUM</td>
</tr>
</tbody>
</table>

Jason Detwiler

INT Seminar, 13 July 2005
Germanium Purity

Surface Activation of 86% Enriched Ge (in atoms/day/kg) [1]

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Lal et al. [2]</th>
<th>Hess et al. [3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H</td>
<td>~113</td>
<td>~140</td>
</tr>
<tr>
<td>54Mn</td>
<td>0.37</td>
<td>1.4</td>
</tr>
<tr>
<td>57Co</td>
<td>0.28</td>
<td>1.0</td>
</tr>
<tr>
<td>58Co</td>
<td>0.59</td>
<td>1.8</td>
</tr>
<tr>
<td>65Zn</td>
<td>3.12</td>
<td>6.4</td>
</tr>
<tr>
<td>68Ge</td>
<td>0.54</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Shipping container: 2m x 2m x 2m cube

Ge storage: 4m x 4m x 4m cube

Support Materials

Electroformed Copper

- Low-mass design
- Choice plastics (Teflon®, Delrin®, CuFlon®, etc)

Low-background front-end electronics

- High-purity OFHC anode stock
- Ion exchange at C removes Ra, Th
- Factor of >8000 Th removal has been demonstrated
- Expect to achieve 1 μBq/kg 232Th specification
Advanced Event Tagging

Segmentation

Effective against multisite events (especially internal γ's) distributed in z/Φ
(2x-5x red.)

Pulse Shape Discrimination

Effective against multisite events (especially internal γ's) distributed in ρ (1.5x-4x reduction)
Advanced Event Tagging

Granularity

Single Site Time Correlation

\[^{68}_{31} \text{Ga} \quad ^{68}_{32} \text{Ge} \]

\[Q_{\text{EC}} = 2921.1 \text{ keV} \quad Q_{\text{EC}} = 10.367 \text{ keV} \]

Look back in time from 2.9 MeV positron to veto \(^{68}\text{Ga}\) (~10x reduction)

Advanced Veto/Cooling Schemes

Liquid Ar?

Effective against
- \(^{208}\text{Tl}\) and \(^{214}\text{Bi}\) (2x-5x red.)
- some neutrons
- Muons (~10x red.)

40 cm
Cosmogenic Backgrounds

Graph showing the relationship between depth (km.w.e.) and \(\mu \)-induced backgrounds (events/keV/kg/year). The graph includes a data point for KKDC (Gran Sasso) multiplied by 7.4 due to granularity, PSD, and segmentation. There is a horizontal line representing the Majorana total background target. The Sudbury depth is indicated at 6 km.w.e.
Background Budget

<table>
<thead>
<tr>
<th>Background Source</th>
<th>Gross and Net Rates for Important Isotopes</th>
<th>Total Est. Background (per t-y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68Ge</td>
<td>60Co</td>
</tr>
<tr>
<td>Germanium (100 day exp)</td>
<td>Gross *</td>
<td>2.54</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>208Tl</td>
<td>214Bi</td>
</tr>
<tr>
<td>Inner Mount</td>
<td>Gross</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.01</td>
</tr>
<tr>
<td>Cryostat</td>
<td>Gross</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.22</td>
</tr>
<tr>
<td>Copper Shield</td>
<td>Gross</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.64</td>
</tr>
<tr>
<td>Small Parts</td>
<td>Gross</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.02</td>
</tr>
<tr>
<td>External Sources (6000 mwe)</td>
<td>Gross</td>
<td>muons</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.003</td>
</tr>
<tr>
<td>2ν $\beta\beta$ -decay</td>
<td>Gross</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Net</td>
<td>0.003</td>
</tr>
</tbody>
</table>

*Gross/Net = before/after applying cut efficiencies

Dominated by 232Th in Cu

TOTAL SUM 1.21
Majorana Sensitivity

Background model: 0.00025/kg/keV/year

Half Life (Years)

Measurement Time (Months)

60 kg start time
120 kg start time
180 kg start time

KKDC sensitivity

$(0.69 - 4.18) \times 10^{25}$ yrs
Sensitivity to KKDC Signal

KKDC: 71.7 kg y

\[T_{1/2}^{0\nu} = 1.2^{+3.0}_{-0.5} \times 10^{25} \text{ y} \]

\[\langle m_\nu \rangle = 0.44^{+0.14}_{-0.20} \text{ eV} \]

significance: 4.2 \sigma
Sensitivity to KKDC Signal
Summary

- The M180 reference design is massive, clean, hi-tech, and scalable.

- We are confident we can push the background rate in the ROI to ~1 event per ton-year.

- Sensitivity (90% C.L.) for 460 kg y exposure:

 \[T^{0\nu}_{1/2} > 5.6 \times 10^{26} \text{ y or } \langle m_{\nu} \rangle < 100 \text{ meV} \]

- The collaboration is highly experienced in all aspects of the experiment; no reliance on unproven technologies.

- We are ready to proceed!