Low-momentum interactions for nuclei

Achim Schwenk

Indiana University

Nuclear Forces and the Quantum Many-Body Problem
Institute for Nuclear Theory, Oct. 7, 2004

with Scott Bogner, Tom Kuo and Andreas Nogga

supported by DOE and NSF
Outline

1) Introduction and motivation

2) Low-momentum nucleon-nucleon interaction

3) Cutoff dependence as a tool to assess missing forces
 Perturbative low-momentum 3N interactions
 Nogga, Bogner, AS, nucl-th/0405016.

4) Selected applications:
 perturbative 4He, 16O and 40Ca, perturbative nuclear matter?
 Bogner, Furnstahl, AS, in prep.
 pairing in neutron matter

5) Summary and priorities
1) Introduction and motivation

Nuclear forces and the quantum many-body problem

Choice of nuclear force starting point:

If system is probed at low energies, short-distance details are not resolved.

Improvement of many-body methods:
Bloch-Horowitz, NCSM, CCM, DFT + effective actions, RG techniques,…
1) Introduction and motivation

Nuclear forces and the quantum many-body problem

Choice of nuclear force starting point:

Use low-momentum degrees-of-freedom and replace short-dist. structure by something simpler w/o distorting low-energy observables.

Infinite number of low-energy potentials (diff. resolutions), use this freedom to pick a convenient one.
What depends on this resolution?

- strength of 3N force relative to NN interaction
- strength of spin-orbit splitting obtained from NN force
- size of exchange-correlations, Hartree-Fock with NN interaction bound or unbound
- convergence properties in harmonic oscillator basis

Change of resolution scale corresponds to changing the cutoff in nuclear forces. [This freedom is lost, if one uses the cutoff as a fit parameter (or cannot vary it substantially).]

Observables are independent of the cutoff, but strength of NN, 3N, 4N,… interactions depend on it! Explore…
2) Low-momentum nucleon-nucleon interaction

Many different NN interactions, fit to scattering data below $E_{\text{lab}} \lesssim 350 \text{MeV}$ (with $\chi^2/\text{dof} \approx 1$)

Details not resolved for relative momenta larger than $\Lambda \sim 2.1 \text{ fm}^{-1}$ or for distances $r \lesssim 0.5 \text{ fm}$

Strong high-momentum components, model dependence
Separation of low-momentum physics + renormalization

Integrate out high-momentum modes and require that the effective potential $V_{\text{low } k}$ reproduces the low-momentum scattering amplitude calculated from potential model V_{NN}

Cutoff Λ is boundary of unresolved physics

[NB: cutoff only on potential]

$$
T(k', k; k^2) = V_{\text{NN}}(k', k) + \frac{2}{\pi} \mathcal{P} \int_0^\infty \frac{V_{\text{NN}}(k', p) T(p, k; k^2)}{k^2 - p^2} \, p^2 \, dp
$$

$$
T(k', k; k^2) = V_{\text{low } k}(k', k) + \frac{2}{\pi} \mathcal{P} \int_0^\Lambda \frac{V_{\text{low } k}(k', p) T(p, k; k^2)}{k^2 - p^2} \, p^2 \, dp
$$

$V_{\text{low } k}$ sums high-momentum modes (according to RG eqn)
RG evolution also very useful for χEFT interactions

- choose cutoff range in χEFT to include maximum known long-distance physics $\Lambda_{\chi} \sim 500\text{-}700$ MeV for N3LO

- run cutoff down lower for application to nuclear structure (e.g., to $\Lambda \approx 400$ MeV)
 - observables (phase shifts, …) preserved
 - higher-order operators induced by RG

comp. fitting a χEFT truncation at lower Λ (less accurate)
Details on $V_{\text{low } k}$ construction:

1. Resummation of high-momentum modes in energy-dep. effective interaction (BH equation) [largest effect]

$$\hat{Q}(k', k; \omega) = V_{\text{NN }}(k', k) + \frac{2}{\pi} \mathcal{P} \int_\Lambda^\infty \frac{V_{\text{NN }}(k', p) \hat{Q}(p, k; \omega)}{\omega - p^2} p^2 dp$$

2. Converting energy to momentum dependence through equations of motion; below to second order (to all orders by iteration, 1+2 = Lee-Suzuki transformation)

$$V_{\text{low } k}(k', k) = \hat{Q}(k', k; k^2) + \int_p \frac{\hat{Q}(k'; p, k^2) - \hat{Q}(k'; p, p^2)}{k^2 - p^2} \hat{Q}(p, k; k^2) + \mathcal{O}(\hat{Q}^3)$$

[small changes, $Q(\omega=0)$ good for E_{lab} below ~ 150 MeV]

Both steps equivalent to RG equation Bogner et al., nucl-th/0111042.

$$\frac{d}{d\Lambda} V_{\text{low } k}(k', k) = \frac{2}{\pi} \frac{V_{\text{low } k}(k', \Lambda) T(\Lambda, k; \Lambda^2)}{1 - (k/\Lambda)^2}$$

[Hermitize $V_{\text{low } k}$ or symmetrized RG equation (very small changes)]
Exact RG evolution of all NN models below $\Lambda \sim 2.1 \text{ fm}^{-1}$ leads to model-independent low-mom. interaction $V_{\text{low } k}$ (all channels)
Collapse of off-shell matrix elements as well

\begin{align*}
\text{N}^2\text{LO} \\
\text{N}^3\text{LO}
\end{align*}
Collapse due to same long-distance (π) physics + phase shift equivalence
$V_{\text{low } k}$ is much softer, without strong core at short-distance, see relative HO matrix elements $< 0 \mid V_{\text{low } k} \mid n >$

convergence will not require basis states up to ~ 50 shells
Poor convergence in SM calculations (due to high-mom. components \(\sim 1 \) GeV in NN potentials)

Unsatisfactory starting-energy dependence (due to loss of BH self-consistency in 2-body subsystem)

\(V_{\text{low } k} \) will lead to improvements

from P. Navratil, talk @ INT-03-2003

from T. Papenbrock, talk @ MANSC 2004
Comparison of $V_{\text{low } k}$ to G matrix elements up to $N=4$

BUT: $V_{\text{low } k}$ is a bare interaction!
Comments:

1. Renormalization of high-momentum modes in free-space easier (before going to a many-body system)

2. Soft interaction avoids need for G matrix resummation (which was introduced because of strong high-momentum components in nuclear forces)

3. $V_{\text{low } k}$ is energy-independent, no starting-energy dep.

4. Cutoff is not a parameter, no “magic” value, use cutoff as a tool…
3) Cutoff dependence as tool to assess missing forces
Perturbative low-momentum 3N interactions

All low-energy NN observables unchanged and cutoff-indep.

Nijmegen partial wave analysis
△ CD Bonn
○ $V_{\text{low } k}$
All NN potentials have a cutoff ("P-space of QCD") and therefore have corresponding 3N, 4N, … forces.

If one omits the many-body forces, calculations of low-energy 3N, 4N, … observables will be cutoff dependent.

By varying the cutoff, one can assess the effects of the omitted 3N, 4N, … forces. Nogga, Bogner, AS, nucl-th/0405016.
Potential model dependence in $A=3,4$ systems (Tjon line)

Cutoff dependence due to missing three-body forces along Tjon line
Nogga, Bogner, AS, nucl-th/0405016.

Results for reasonable cutoffs seem closer to experiment
Renormalization: three-body forces inevitable!
Faddeev, $V_{low \ k}$ only

Cutoff dep. of low-energy 3N observables due to missing three-body forces (see π EFT)

$A=3$ details
Adjust **low-momentum three-nucleon interaction** to remove cutoff dependence of A=3,4 binding energies

Use leading-order effective field theory 3N force given by van Kolck, PR C49 (1994) 2932; Epelbaum et al., PR C66 (2002) 064001.

Motivation: At low energies, all phenomenological 3N forces (from ω, ρ,… exchange, high-mom. N, Δ,… intermed. states) collapse to this form; cutoffs in $V_{low k}$ and χ EFT similar.
Constraint on D- and E-term couplings from fit to 3H

$E(3H) = E(V_{\text{low } k} + 2\pi \ 3NF) + c_D < \text{D-term} > + c_E < \text{E-term} >$

Second constraint from fit to 4He [E-term fixed by left Fig.]

$\eta=1$: 4He fitted exactly

$\eta=1.01$: deviation from exp.

≈ 600 keV

non-linearities at larger cutoffs
2 couplings for D- and E-terms fitted to 3H and 4He

We find all 3N parts perturbative for cutoffs $\Lambda \lesssim 2$ fm$^{-1}$

Λ [fm$^{-1}$]	T	$V_{low\ k}$	c-terms	D-term	E-term	3H	4He
1.0	21.06	-28.62	0.02	0.11	-1.06	38.11	-62.18
1.3	25.71	-34.14	0.01	1.39	-1.46	50.14	-78.86
1.6	28.45	-37.04	-0.11	0.55	-0.32	57.01	-86.82
1.9	30.25	-38.66	-0.48	-0.50	0.90	60.84	-89.50
2.5(a)	33.30	-40.94	-2.22	-0.11	1.49	67.56	-90.97
2.5(b)	33.51	-41.29	-2.26	-1.42	2.97	68.03	-92.86
3.0(*)	36.98	-43.91	-4.49	-0.73	3.67	78.77	-99.03

- $<k^2> \approx (A-1) m <T> \approx m_\pi^2 \ll \Lambda^2$
- c- and E-terms increase and cancel
- 3N force parts increase by factor ~ 5 from $A=3$ to $A=4$
- Larger cutoffs: contributions become nonperturbative, fit to 4He non-linear (a,b) and approximate solution (*)

20% is beyond $(Q/\Lambda)^3 \sim (m_\pi/\Lambda)^3$
5) Selected applications

Perturbative calculations for ^4He, ^{16}O and ^{40}C

Results for $V_{\text{low } k}$

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>$V_{\text{low } k}$ from N3LO</th>
<th>HF</th>
<th>HF+2nd</th>
<th>HF+2nd +3rd</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{16}O</td>
<td></td>
<td>B/A</td>
<td>3.23</td>
<td>7.22</td>
<td>7.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\langle r_c \rangle$</td>
<td>2.30</td>
<td>2.52</td>
<td>2.65</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td></td>
<td>B/A</td>
<td>6.19</td>
<td>9.10</td>
<td>9.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\langle r_c \rangle$</td>
<td>2.610</td>
<td>3.302</td>
<td>3.444</td>
</tr>
</tbody>
</table>

$V_{\text{low } k}$ binds nuclei on HF level (contrary to all other microscopic NN interactions)

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>$V_{\text{low } k}$ from (all for $\Lambda=2.1 \text{ fm}^{-1}$)</th>
<th>Nijmegen II</th>
<th>AV18</th>
<th>CD-Bonn</th>
<th>N3LO</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>^4He</td>
<td>BE/A</td>
<td>6.88</td>
<td>6.85</td>
<td>6.95</td>
<td>6.61</td>
<td>7.07</td>
</tr>
<tr>
<td></td>
<td>$\langle r^2 \rangle^{1/2}$</td>
<td>1.68</td>
<td>1.69</td>
<td>1.63</td>
<td>1.75</td>
<td>1.67</td>
</tr>
<tr>
<td>^{16}O</td>
<td>BE/A</td>
<td>8.26</td>
<td>8.26</td>
<td>8.30</td>
<td>8.11</td>
<td>7.98</td>
</tr>
<tr>
<td></td>
<td>$\langle r^2 \rangle^{1/2}$</td>
<td>2.58</td>
<td>2.59</td>
<td>2.49</td>
<td>2.66</td>
<td>2.73</td>
</tr>
<tr>
<td>^{40}Ca</td>
<td>BE/A</td>
<td>9.66</td>
<td>9.53</td>
<td>9.93</td>
<td>9.50</td>
<td>8.55</td>
</tr>
<tr>
<td></td>
<td>$\langle r^2 \rangle^{1/2}$</td>
<td>3.20</td>
<td>3.22</td>
<td>3.10</td>
<td>3.29</td>
<td>3.485</td>
</tr>
</tbody>
</table>

FIG. 1. Behavior of E_{HF} with $\hbar \omega$ and N for ^{16}O.

exact 7.30
Pairing in neutron matter

\[1S_0 \text{ pairing} \]
\[3P_2 \text{ pairing} \]

\[V_{\text{low } k} \]

Suppression due to polarization effects (spin-/LS fluct.)
No strong core → simpler many-body starting point

- **BHF** Bao et al. [NP A575 (1994) 707.]
- **Simple \(V_{\text{low } k} \) Hartree-Fock**
- **FHNC** Akmal et al. [PR C58 (1998) 1804.]

Neutron matter EoS

nuclear matter from low-mom. NN + 3N int. Bogner, Furnstahl, AS, in prep.
5) Summary and priorities

+ Model-independent low-momentum interaction $V_{\text{low }} k$
+ Cutoff independence as a tool, not fit parameter
+ Three-body forces required by renormalization, perturbative low-momentum 3N interaction

* Cutoff dependence and convergence properties of NCSM and CCM results obtained from $V_{\text{low }} k + 3\text{NF}$, isospin dependence of 3N force sufficient? ^{10}B?

* Derivation of $V_{\text{low }} k$ from phase shifts + pion exchange
 Bogner, Birse, AS, in prep.

* Calculations of SM effective interactions from $V_{\text{low }} k + 3\text{N}$ force in regions where two-body G matrix fails