Study of core-collapse supernovae: Post-bounce evolution and EOS effects

K. ‘Sumi’yoshi, S. Yamada, H. Suzuki, H. Shen and H.Toki
Numazu College of Technology, Japan

• Supernova simulations beyond 300 msec after bounce:
 - General relativistic neutrino-transfer hydrodynamics
 - Relativistic EOS vs Lattimer-Swesty EOS
 - EOS effects on stalled-shock & supernova cores
Why supernova does not explode?, What is missing?

- **Microphysics issues:**
 - Equation of state
 - ν-reaction rates
 - e-capture rates,…

- **Macrophysics issues:**
 - Hydrodynamics
 - ν-transfer
 - Convection, rotation,…

Both issues should be examined to clarify the explosion mechanism.

- **We focus on microphysics by simulations of neutrino-transfer hydrodynamics**

- **In spherical symmetry, neutrino-transfer can be solved, we can examine microphysics**
Physics of unstable nuclei

• Recent advance of radioactive nuclear beam facilities provides us with data on n-rich nuclei: RIKEN, GSI, RIA, …
 ex. RIKEN-RI Beam Factory

 RI Beam Factory (RIBF):
 Upgrading project of RIKEN Accelerator Research Facility (RARF)

• Relativistic EOS table is based on data of unstable nuclei
 Shen et al. NPA, PTP (1998)

• We should examine supernova simulations in the light of physics of unstable nuclei
Efforts on examining microphysics

• No explosion (shock stalled) in 1D so far with:
 – Lattimer-Swesty EOS, Bruenn’s weak rates
 – Improved neutrino-rates, electron capture rates
 – Different sets of EOS
 – ~300 msec after bounce

• Post-bounce evolution for a long period of ~1 sec?
• EOS effects on shock dynamics and supernova cores?

• A new numerical code for general relativistic hydrodynamics with Boltzmann eq. for
Purpose of our studies

- **Within the exact treatment of Δ-transfer hydrodynamics in spherical symmetry**
 - Find out the fate of core collapse
 - Explosion or not?
 - Long-term evolution of supernova core
 - Up to ~ 1 sec after bounce
 - Examine the effect of new EOS
 - Some hints on the explosion mechanism

- **The first comparison of EOS effects beyond 300 msec**
 - Core bounce, shock dynamics and Δ-heating mechanism
 - Evolution of proto-neutron star, supernova Δ
Roles of Equation of state (EOS)

1. Pressure, stiffness,
 - structure, core bounce,..
2. Entropy, Temperature
 - \mathcal{E}-energy, spectrum,..
3. Composition (n, p, α, nuclei)
 - e-capture, \mathcal{E}-interaction,..

• Systematic studies by parameterized EOS
 - Baron-Cooperstein, Takahara-Sato, Bruenn, Swesty,..

• Set of physical EOS
 - Wolff-Hillebrandt EOS (1985)
 - Lattimer-Swesty EOS (1991) Used so far
 - Relativistic (Shen) EOS (1998) NEW
Relativistic equation of state for supernovae

• Relativistic Mean Field + Local-Density Approx.
 Shen, Toki, Oyamatsu & Sumiyoshi, 1998, NPA, PTP
 – Based on relativistic Brückner Hartree-Fock
 – Checked by exp. data of unstable nuclei
 • Nuclear structure: mass, charge radius, neutron skin,
 • EOS data table (~60MB) covers
 – Density: $10^5 \sim 10^{15}$ g/cm3
 – Proton fraction: $0 \sim 0.56$
 – Temperature: $0 \sim 100$ MeV
Relativistic Mean Field Theory - Effective Lagrangian
Serot, Walecka 1986

\[L_{RMF} = \partial \mu \partial \nu \partial \rho \partial \sigma M g_{\mu \nu \rho \sigma} + g_{\mu \nu \rho} \eta^{\sigma} \eta^a \eta_{\mu \nu} A^a \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \]

\[+ \frac{1}{2} \partial \mu \partial \nu \partial \rho \partial \sigma \partial \tau \frac{1}{2} m^2 \partial^2 \partial^2 - \frac{1}{3} g_2 \partial^3 \partial^3 - \frac{1}{4} g_3 \partial^4 \]

\[\frac{1}{4} \epsilon_{\mu \nu \rho \sigma} H_{\mu \nu} H^{\rho \sigma} + \frac{1}{2} m^2 \partial^2 \partial^2 + \frac{1}{4} c_3 \left(\partial^3 \eta^a \eta_{\mu \nu} \right)^2 \]

\[\frac{1}{4} G^a \epsilon_{\mu \nu \rho \sigma} \eta_{\mu \nu} G^{\rho \sigma} + \frac{1}{2} m_2 \partial^a \partial^a - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} \]

Parameters determined by nuclear data (masses, radii)

Nuclear structure calculations \(\rightarrow\) EOS calculations
Neutron skins of Na isotopes

Symbols: Exp. Data
Lines: RMF

Local density approximation in cell

- Non-uniform
- Uniform

- Mix of: Neutron, Proton, Alpha, Nucleus

Shen et al. PTP (1998)
Comparison of EOSs (1)

<table>
<thead>
<tr>
<th></th>
<th>LS-EOS</th>
<th>Shen-EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Compressible liquid drop model</td>
<td>Rel. Mean Field + Local-Density Approx.</td>
</tr>
<tr>
<td>Bulk EOS</td>
<td>“Skyrme”-like</td>
<td>RMF (RBHF)</td>
</tr>
<tr>
<td>Interaction</td>
<td>Saturation</td>
<td>Mass, R_c, R_n</td>
</tr>
<tr>
<td>Nucl. Data</td>
<td>---</td>
<td>Yes (incl. unstable)</td>
</tr>
<tr>
<td>n-skin</td>
<td>---</td>
<td>Yes</td>
</tr>
<tr>
<td>M^*</td>
<td>---</td>
<td>Yes</td>
</tr>
<tr>
<td>Info</td>
<td>Subroutine</td>
<td>Data table</td>
</tr>
</tbody>
</table>
Comparison of EOSs (2)

<table>
<thead>
<tr>
<th></th>
<th>LS-EOS</th>
<th>Shen-EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K [MeV]</td>
<td>180, 220, 375</td>
<td>281</td>
</tr>
<tr>
<td>A_{sym} [MeV]</td>
<td>29.3</td>
<td>36.9</td>
</tr>
<tr>
<td>Max. NS mass [M_{sol}]</td>
<td>1.8, 2.0, 2.7</td>
<td>2.2</td>
</tr>
</tbody>
</table>

- **Symmetry energy effect is large** cf. non-rel.
- Neutron Star: $Y_p = 0.1 \sim 0.2$ for rel-EOS [Sumiyoshi et al. NPA595 (1995)]
- **Difference of composition, chemical potential**
 - e-capture, β-scattering rates → supernova dynamics
Numerical code

• General relativistic hydrodynamics: lagrangian
 • Shock tubes, point explosion, collapse tests

• General relativistic Boltzmann eq. solver: S_N-method
 • Comparisons with Monte-Carlo calculations

• Fully implicit in time: advantageous to have long time steps
 • Comparisons with Liebendörfer et al. (astro-ph/0310662)
 • Consistent up to ~200 msec

• Other applications (hydrodynamics + heating-cooling)
Boltzmann equation for n (GR, spherical)

Lindquist, Castor 1972, Bruenn 1985

$$
e^{-f} \frac{\partial}{\partial t} f + 4 e^{-f} \frac{\partial e^r}{\partial m}$$

$$+ \frac{\partial}{\partial m} \left(1 - m^2 \right)^2 \frac{\partial r^2}{\partial m} + e^{-f} \frac{\partial \ln(r_B^3)}{\partial m}$$

$$+ e^{-f} \frac{\partial \ln(r_B^3)}{\partial t} e^{-f} \frac{\partial \ln(r)}{\partial t}$$

$$= \frac{1}{r_B} e^{-f} \frac{\partial}{\partial t} f_{\text{collision}}$$

Finite differenced in (t, m, \Box)

Mezzacappa-Bruenn 1993
Neutrino processes

- **Emission and absorption:**
 \[
 \begin{align*}
 e^- + p & \rightarrow n + e^- \\
 e^+ + n & \rightarrow p + e^+
 \end{align*}
 \[
 \begin{align*}
 e^- + A & \rightarrow A^\prime + e^- \\
 e^+ + A & \rightarrow A^\prime + e^+
 \end{align*}
 \]

- **Scattering:**
 \[
 \begin{align*}
 \bar{n}_i + N & \rightarrow \bar{n}_i + N \\
 \bar{n}_i + e & \rightarrow \bar{n}_i + e
 \end{align*}
 \[
 \begin{align*}
 \bar{n}_i + A & \rightarrow \bar{n}_i + A \\
 \bar{n}_i + N & \rightarrow \bar{n}_i + N
 \end{align*}
 \]

- **Pair process:**
 \[
 \begin{align*}
 e^- + e^+ & \rightarrow n + n^* \\
 N + N & \rightarrow \bar{n}_i + \bar{n}_i
 \end{align*}
 \[
 \begin{align*}
 \bar{n}_i + \bar{n}_i & \rightarrow \bar{n}_i + \bar{n}_i \\
 \bar{n}_i + N & \rightarrow \bar{n}_i + N
 \end{align*}
 \]

- **Nucleon-Nucleon Bremsstrahlung**

i = e, \(\bar{n} \), \(n \)
Set up of numerical simulations

• **Initial model:** Fe core of $15M_{\text{solar}}$
 – $M_{\text{Fe}} = 1.32M_{\text{solar}}$

• **Mesh size:** radial $N_r = 127$,
 -energy $N_E = 14$, angle $N_q = 6$
 – \square-distribution: $f(t, m, E_{\square}, \square)$

• **\square-species:** $\square_e, \square_e, \square_m, \square_m, (\square_t, \square_t)$ ($N_\square = 4$)
 – ~120 hours on Fujitsu-vpp5000 (8PE)
 – Block tridiagonal matrix: cyclic reduction in parallel
 – $N_r * (N_E * N_\square * N_\square)^3$

Woosley-Weaver ‘95

Sumiyoshi, Parallel Computing, 1997
Set up of numerical simulations II

• Follow up to ~1 sec
 – More grids for outer layer to resolve accretions
 – Lower resolution for inner part
 – Will be improved by rezoning

• Using 2 EOS sets (Shen-EOS, LS-EOS)
 – Comparisons of collapse, bounce, shock propagation
 – Other settings (weak rates) are the same

• First comparison of post-bounce beyond 300 msec
 Janka et al. astro-ph/0405289
Collapse phase in Shen-EOS case

Difference from LS-EOS case

- **Stiffness**
 - *Less* compression
 - $\rho_c(\text{peak})=3.3 \times 10^{14} \text{ g/cm}^3$ (LS: $4.2 \times 10^{14} \text{ g/cm}^3$)

- **Composition**
 - *Less* n-rich nuclei: large symmetry energy
 - *Smaller* free proton fraction: $X_p \downarrow$, $\rho_p \downarrow$

- **Smaller e-capture rates**
 - Size of bounce core
 - e-capture on nuclei suppressed due to N>40 (Bruenn’s rate)
Composition of dense matter during collapse: $\rho_c = 10^{11}$ g/cm3

Mass fraction

![Graph showing mass fraction as a function of $M_b [M_{solar}]$]

- Shen-EOS
- LS-EOS

Composition of dense matter during collapse: $\rho_c = 10^{11}, 10^{12}$ g/cm3

Z, N of Nuclei

Profiles at bounce: $t_{pb} = 0$ ms

Lepton fraction

Velocity

Y\text{lepton}

Y\text{e}

Y\text{n}

Velocity [cm/s]

$M_b [M_{\text{solar}}]$

Y_{lepton}

Y_{e}

Y_{n}

$M_b [M_{\text{solar}}]$

preliminary

Shen-EOS

LS-EOS
Trajectories of fluid elements (Shen-EOS)

- surface
- Fe core
- collapse
- radius [km]
- time [sec]

- shock wave
- proto-neutron star
- bounce

preliminary

Trajectories of position of shock wave

\[R_{\text{shock}} \text{ [km]} \]

\[\text{time after bounce [sec]} \]

- Red line: Shen-EOS
- Blue line: LS-EOS

preliminary
Neutrino heating behind the shock after bounce

Heating:

```
\bar{e}_e + n \rightarrow e^- + p
\bar{\nu}_e + p \rightarrow e^+ + n
```
Post-bounce phase in Shen-EOS case

Difference from LS-EOS case

- **Heating rate**
 - *Smaller* due to *lower* luminosity & *smaller* X_p
 - Shock recession to be checked by higher resolution

- **Thermal evolution of central core**
 - *Lower* temperature, *lower* central density
 - Effect of effective mass M^* & stiffness

- **Possible effects of EOS on**
 - Neutrino-heating mechanism
 - Supernova [], proto-neutron star evolution
 - Collapsar, black hole formation
Heating rate after bounce: $t_{pb}=100$ ms

$\sim [\text{MeV/s/N}]$

Heating region

Heating rate [erg/g/s]

radius [km]

Shen-EOS

LS-EOS

preliminary
Profiles after bounce: \(t_{pb} = 100 \text{ms} \)

Luminosity

- **Shen-EOS**
- **LS-EOS**

Mass fraction

- \(X_n \)
- \(X_p \)
- \(X_e \)

Profiles

- **nuclei**

LS-EOS vs. **Shen-EOS**

- Preliminary
Profiles after bounce: $t_{pb} = 100\text{ms}$

Temperature

- **Shen-EOS**
- **LS-EOS**

Entropy

preliminary
Comparison of numerical results

<table>
<thead>
<tr>
<th></th>
<th>LS-EOS</th>
<th>Shen-EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{shock}}^{(\text{max})}$</td>
<td>164 km</td>
<td>160 km</td>
</tr>
<tr>
<td>$R_{\text{shock}}^{600\text{ms}}$</td>
<td>23 km</td>
<td>20 km</td>
</tr>
<tr>
<td>ρ_c at 600ms</td>
<td>6.0×10^{14} g/cm3</td>
<td>3.9×10^{14} g/cm3</td>
</tr>
<tr>
<td>M_c^* 600ms</td>
<td>938 MeV</td>
<td>440 MeV</td>
</tr>
<tr>
<td>$T_{\text{peak}}^{600\text{ms}}$</td>
<td>48 MeV</td>
<td>37 MeV</td>
</tr>
</tbody>
</table>

- Less compression
- $M^*(<M)$: increase of level density: $E \sim \frac{p^2}{2M^*}$
 → Lower T to get the same entropy
Profiles after bounce: $t_{pb}=20-600$ ms

Temperature

LS-EOS
$T_{peak} \sim 50$ MeV

Shen-EOS
$T_{peak} \sim 40$ MeV

preliminary
Profiles after bounce: $t_{pb}=20-600$ ms (Shen-EOS)

Entropy

Lepton fraction

preliminary
Properties of supernova neutrinos

Luminosity [erg/s]

$\langle E_n \rangle$ [MeV]

- Shen-EOS
- LS-EOS

preliminary
Summary

• Numerical simulations of supernovae
 – General relativistic \square-transport hydrodynamics in spherical symmetry

• New nuclear physics with unstable nuclei
 – Relativistic EOS table

• Long-term simulation beyond 300 msec
 – Stalled shock and supernova cores

• Comparisons with LS-EOS
 – No prompt/delayed explosion
 – Difference in composition & stiffness
 – Difference in thermal evolution of central core
To be done

- Follow up to $t_{\text{pb}} \sim 1$ sec and beyond
 - Continue to proto-neutron star cooling
 - Accretion induced collapse, Neutrino-driven winds
 - More grids for inner core
 » To check stalled shock
 » Adaptive rezoning

- Extension of relativistic EOS table
 - Include hyperons (Ishizuka-Ohinishi)

- Update electron capture, \bar{n}-rates
 - Consistent with EOS