Determination of Parton Distribution Functions

Shunzo Kumano, Saga University

kumanos@cc.saga-u.ac.jp, http://hs.phys.saga-u.ac.jp

Generalized Parton Distributions and Hard Exclusive Processes

INT, University of Washington, Seattle, U.S.A.

June 23 - August 29, 2003

August 14, 2003
Contents

• Introduction

• Polarized PDFs in the nucleon
 AAC analysis (2000, new)
 Comments on \(v \) factory

• PDFs in nuclei

• Summary
Why PDFs?

(1) basic interest to understand hadron structure
 - perturbative & non-perturbative QCD
 e. g. spin is a fundamental quantity

(2) practical purpose: to describe hadron cross sections precisely
 For hadron reactions with $Q^2 > 1 \text{ GeV}^2$, accurate PDFs are needed.
 For example
 - exotic events at large Q^2: physics “beyond QCD”
 - heavy-ion reactions: quark-gluon plasma signature
 - neutrino reactions: $\nu + \text{O}$ (neutrino properties)
 -...
Situation of PDFs?

(1) **unpolarized PDFs in the nucleon**
 3 major groups (CTEQ, GRV, MRST)
 → well established from small x to large x

(2) **polarized PDFs in the nucleon**
 several groups
 → not established

(3) **PDFs in nuclei**
 only a few papers
Parton distributions are determined by fitting various experimental data.

- electron/muon \(\mu + p \rightarrow \mu + X \)
- neutrino \(\nu_\mu + p \rightarrow \mu + X \)
- Drell-Yan \(p + p \rightarrow \mu^+\mu^- + X \)
- direct photon \(\mu/p + p \rightarrow \gamma + X \)
- ...

1. Assume parton distributions at \(Q_0^2 (\sim 1 \text{ GeV}^2) \)

 \[f_i(x, Q_0^2) = A_i x^{\alpha_i} (1 - x)^{\beta_i} (1 + \gamma_i x) \]

 where \(i = u, d, \bar{u}, \bar{d}, s, g \)

2. Calculate structure functions at experimental \(Q^2 \) points

3. Then, \(A_i, \alpha_i, \beta_i, \gamma_i \) are determined in comparison with data
Recent unpolarized distributions

see http://durpdg.dur.ac.uk/hepdata/pdf.html

Determination of Polarized Parton Distribution Functions

AAC (Asymmetry Analysis Collaboration) studies on the polarized PDFs

M. Hirai et al., to be submitted for publication.

http://spin.riken.bnl.gov/aac/
(Polarized PDF codes could be obtained from this site.)
• proton-spin issue

polarized e/µ-proton scattering
→ measurement of \(g_1^{LO} \)
\[
g_1^{LO} = \frac{1}{2} \sum_i e_i^2 (\Delta q_i + \Delta \bar{q}_i)
\]
proton, deuteron, \(^3\text{He}\) \(g_1 \) data
with isospin symmetry
→ valence and sea polarization
\(\Delta u_v, \Delta d_v, \Delta \bar{q} \)
quark spin content
\(\Delta \Sigma = \Delta u_v + \Delta d_v + 6 \cdot \Delta \bar{q} \)
experimentally
\[
\int_0^1 dx \Delta \Sigma(x) \approx 0.1 - 0.3
\]
rest of the spin ????

Experimental data

<table>
<thead>
<tr>
<th>Target</th>
<th>Exp.</th>
<th>x</th>
<th>Q^2 GeV^2</th>
<th>Data #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton</td>
<td>EMC</td>
<td>0.015-0.466</td>
<td>3.5~29.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SMC</td>
<td>0.005-0.480</td>
<td>0.25~72.07</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>E130</td>
<td>0.18-0.70</td>
<td>3.5~10.0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>E143</td>
<td>0.022-0.847</td>
<td>0.28~9.53</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>HERMES</td>
<td>0.028-0.66</td>
<td>1.01~7.36</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>SMC</td>
<td>0.005-0.480</td>
<td>1.3~54.4</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>E143</td>
<td>0.022-0.847</td>
<td>0.28~9.53</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>E155</td>
<td>0.015-0.75</td>
<td>1.22~34.79</td>
<td>24</td>
</tr>
<tr>
<td>Neutron</td>
<td>E142</td>
<td>0.035-0.466</td>
<td>1.1~5.5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>E154</td>
<td>0.0174-0.5643</td>
<td>1.21~15.0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>HERMES</td>
<td>0.033-0.464</td>
<td>1.22~5.25</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>375</td>
</tr>
</tbody>
</table>

The graph shows a scatter plot of Q^2 (GeV^2) vs. x for various experiments and targets, indicating the data points for different experiments (E130, E143, EMC, SMC, HERMES) and targets (protons, deuterons, neutrons). The data points are color-coded to distinguish between different experiments and targets.
Initial distributions

\[\Delta f_i(x,Q_0^2) = A_i x^{\alpha_i} (1 + \gamma_i x^{\lambda_i}) f_i(x,Q_0^2) \]

\[i = u_v, d_v, \bar{q}, g \quad A_i, \alpha_i, \gamma_i, \lambda_i: \text{parameters} \]

\[\chi^2 \text{ fit to the data [p, n (}^3\text{He)}, d] \]

\[\chi^2 = \sum_i \frac{(A_{1i}^{\text{data}} - A_{1i}^{\text{calc}})^2}{(\sigma_{A_{1i}}^{\text{data}})^2} \]

\[A_1 \approx \frac{g_1}{F_1} = g_1 \frac{2 x (1 + R)}{F_2} \]

\[R = \frac{F_L}{2 x F_1} = \frac{F_2 - 2 x F_1}{2 x F_1} \]

We analyzed with the following conditions.

- unpolarized PDF \(\text{GRV98} \)
- initial \(Q^2 \) \(Q_0^2 = 1 \text{ GeV}^2 \)
- number of flavor \(N_f = 3 \)
- positivity \(|\Delta f(x)| \leq f(x) \) (to be precise, \(|\Delta \sigma| \leq \sigma \))
- antiquark flavor: \(\Delta u = \Delta d = \Delta s \)
Results

Total χ^2 LO χ^2/d.o.f. = 0.896
NLO χ^2/d.o.f. = 0.834

Total data 375

Spin asymmetry A_{1p}

$Q^2 = 5 \text{ GeV}^2$

Diagram showing A_{1p} as a function of x. Data points from various experiments are plotted, including LO, NLO, E130, E143, EMC, SMC, and HERMES.
Neutron (3He)

$Q^2 = 5 \text{ GeV}^2$

Deuteron

$Q^2 = 5 \text{ GeV}^2$
Q² dependence of A_1^p

Parton distributions (Q²=1 GeV²)
First moments \((Q^2 = 1 \text{ GeV}^2)\)

<table>
<thead>
<tr>
<th></th>
<th>(\Delta u_v)</th>
<th>(\Delta d_v)</th>
<th>(\Delta \bar{q})</th>
<th>(\Delta g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>0.926</td>
<td>-0.341</td>
<td>-0.064</td>
<td>0.831</td>
</tr>
<tr>
<td>NLO</td>
<td>0.926</td>
<td>-0.341</td>
<td>-0.089</td>
<td>0.532</td>
</tr>
</tbody>
</table>

Spin content \(\Delta \Sigma\)
LO : 0.201
NLO : 0.051

rather small spin content in the NLO, \(\Delta \Sigma = 0.1\sim 0.3\) ?

→ check the antiquark distribution
"Spin content" $\Delta \Sigma$

$$\Delta \Sigma(x_{min}) = \int_{x_{min}}^{1} \Delta \Sigma(x) \, dx$$

$$\frac{\Delta q}{q} \propto x^{\alpha_q} \quad (x \to 0)$$
AAC studies in progress

(1) re-analysis
 with SLAC-E155 (proton)

(2) errors of the polarized PDFs

by M. Hirai et. al.
Results

• Total χ^2
 New : χ^2/d.o.f. = 346.33 (0.900)
 $\Delta g(x)=0$: χ^2/d.o.f. = 355.01 (0.922)

• First moments
 ($Q^2 = 1$ GeV2, $\overline{\text{MS}}$ scheme)

<table>
<thead>
<tr>
<th></th>
<th>Δu_v</th>
<th>Δd_v</th>
<th>Δq</th>
<th>Δg</th>
<th>$\Delta \Sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>0.926</td>
<td>-0.341</td>
<td>-0.062 ± 0.023</td>
<td>0.499 ± 1.268</td>
<td>0.213 ± 0.138</td>
</tr>
<tr>
<td>$\Delta g(x)=0$</td>
<td>(fixed)</td>
<td>(fixed)</td>
<td>-0.054 ± 0.011</td>
<td>0.00</td>
<td>0.259 ± 0.063</td>
</tr>
<tr>
<td>AAC00 (NLO-2)</td>
<td></td>
<td></td>
<td>-0.057 ± 0.038</td>
<td>0.532 ± 1.949</td>
<td>0.241 ± 0.228</td>
</tr>
</tbody>
</table>

LSS01 (MS) : $\Delta g = 0.680$, $\Delta \Sigma = 0.210$
GRSV01 : 0.427, 0.204
BB02 (SET4) : 0.931, 0.150
Proton spin asymmetry A_1^P

preliminary!
New results vs. AAC2000

- $\Delta d_v(x)$ is almost the same as AAC2000
- $\Delta u_v(x)$, $\Delta q(x)$ and $\Delta g(x)$ are slightly changed by the E155 proton data

preliminary!
Errors of the PDFs

reduction of the error band due to the E155 data

NEW AAC00

E155 data

correlation with $\Delta q(x)$

preliminary!
Analysis with $\Delta g(x) = 0$

preliminary!

The error band shrinks due to the correlation with $\Delta g(x)$.
Summary: AAC determination of the polarized PDFs

(1) 2000 version

- Q^2 dependence of A_1 especially at small Q^2
- positivity condition is taken into account (unless, unphysical result: $|\Delta \sigma| >$
- issue of $\Delta \bar{q}(x)$ at small and large x
 - $\Delta \bar{q}(x \to 0)$ issue \to the quark spin content $\Delta \Sigma$
- The obtained PDFs are available from http://spin.riken.bnl.gov/aac/.

(2) new analysis (2003)

- include E155 (p) data, errors of the polarized PDFs
 - Errors of $\Delta \bar{q}$ and Δg become smaller; however,
 - $\Delta \bar{q}$ and Δg are not well determined (especially Δg).
 - Δg error is correlated with $\Delta \bar{q}$ error, $\Delta \Sigma = 0.213 \pm 0.136$, $\Delta g = 0.468 \pm 1$
- analysis with RHIC γ pseudo-data
 - Including the pseudo-data in our χ^2 analysis,
Prospects

(1) new data are needed for the PDF determination

- fortunately, experiments are going on
 JLab, RHIC-Spin, COMPASS, HERMES, ...
- these new data should lead to accurate determination
 of the polarized PDFs (bright prospects!)

(2) possibilities in Japan

- J-PARC (Japan Proton Accelerator Research Complex
 primary proton beam: large-x physics
- Neutrino Factory (also in Europe / US)
 valence polarization, spin content, strange,
Comments on polarized PDFs in ν scattering
Polarized neutrino-proton scattering (CC)

\[W_{\mu \nu} = (-g_{\mu \nu} + \frac{q_{\mu}q_{\nu}}{q^2}) F_1 + \frac{\hat{p}_\mu \hat{p}_\nu}{p \cdot q} F_2 - i \varepsilon_{\mu \nu \lambda \sigma} \frac{q^\lambda p^\sigma}{2p \cdot q} F_3 \]

where \(\hat{p}_\mu = p_\mu - \frac{p \cdot q}{q^2} q_\mu \)

\[+ i \varepsilon_{\mu \nu \lambda \sigma} \frac{q^\lambda s^\sigma}{p \cdot q} g_1 + i \varepsilon_{\mu \nu \lambda \sigma} \frac{q^\lambda (p \cdot q s^\sigma - s \cdot q p^\sigma)}{(p \cdot q)^2} g_2 \]

\[+ \left[\frac{\hat{p}_\mu s_\nu + \hat{s}_\mu \hat{p}_\nu - s \cdot q \hat{p}_\mu \hat{p}_\nu}{2p \cdot q} \right] g_3 + \frac{s \cdot q \hat{p}_\mu \hat{p}_\nu}{(p \cdot q)^2} g_4 + (-g_{\mu \nu} + \frac{q_{\mu}q_{\nu}}{q^2}) \frac{s \cdot q}{p \cdot q} g_5 \]

new structure functions \(g_3, g_4, g_5 \)

be careful about “various” definitions of \(g_3, g_4, g_5 \)!

\[\frac{d(\sigma_{\lambda_{\mu}=-1}^{CC} - \sigma_{\lambda_{\mu}=+1}^{CC})}{dx \, dy} = \frac{G_F^2 Q^2}{\pi (1 + Q^2/M_W^2)^2} \left\{ [\lambda_{\ell} y(2-y)x g_1^{CC} - (1-y)g_4^{CC} - y^2 x g_5^{CC}] \right\} \]

\[+ 2xy \frac{M^2}{Q^2} \left[\lambda_{\ell} x^2 y^2 g_1^{CC} + \lambda_{\ell} 2x^2 y g_2^{CC} + \left(1 - y - x^2 y^2 \frac{M^2}{Q^2} \right) x g_3^{CC} \right] \]

\[- x \left(1 - \frac{3}{2} y - x^2 y^2 \frac{M^2}{Q^2} \right) g_4^{CC} - x^2 y^2 g_5^{CC} \}

0 at \(Q^2 \gg M^2 \)
g₁, g₄, g₅ in parton model (CC)

\[g_4 = 2 \times g_5 \]

\[g_{vp} = +\Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{c}, \quad g_{i vp} = +\Delta u + \Delta c + \Delta \bar{d} + \Delta \bar{s} \]

\[g_{vp} = -\Delta d - \Delta s + \Delta \bar{u} + \Delta \bar{c}, \quad g_{i vp} = -\Delta u - \Delta c + \Delta \bar{d} + \Delta \bar{s} \]

\[g_{5v}^v + g_{5\bar{v}}^\bar{v} = -(\Delta u_v + \Delta d_v) - (\Delta s - \Delta \bar{s}) - (\Delta c - \Delta \bar{c}) \]

determination of valence polarization

\[g_{v(p+n)/2}^v - g_{5(v(p+n)/2)}^\bar{v} = - (\Delta s + \Delta \bar{s}) + (\Delta c + \Delta \bar{c}) \]
Possibilities at ν factory

$$x(g_1^{\overline{V}p} - g_5^{\overline{V}p})/2$$

$$x(g_1^{\nu p} + g_5^{\nu p})/2$$

S. Forte, M. L. Mangano, G. Ridolfi
Quark spin content

e/μ scattering $\rightarrow \Delta \Sigma = 0 \sim 30\%$

It is not uniquely determined.

v scattering

$$g_1^{vp} + g_1^{\bar{v}p} = (\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d})$$

$$+ (\Delta s + \Delta \bar{s}) + (\Delta c + \Delta \bar{c})$$

in LO $\int dx (g_1^{vp} + g_1^{\bar{v}p}) = \Delta \Sigma$

independent determination of quark spin content $\Delta \Sigma$!
Determination of
Nuclear Parton Distribution Functions

http://hs.phys.saga-u.ac.jp/nuclp.html

(Nuclear PDF codes could be obtained from this site.)

Refs. (1) M. Hirai, SK, M. Miyama,
(2) to be submitted for publication.
Today’s talk on
• χ^2 analysis method, used data
• results

Purposes
• nuclear mechanisms in the high-energy region
• heavy-ion reactions: quark-gluon plasma signature
• neutrino physics: nuclear effects in $\nu + ^{16}\text{O}$
Nuclear modification

Nuclear modification of F_2^A / F_2^D is well known in electron/muon scattering.

\[F_2^A = \sum_i e_i^2 \times \left[q_i(x) + \bar{q}_i(x) \right]_A \]

The graph shows the ratio of F_2^A to F_2^D for different experiments (EMC, NMC, E139, E665). The data points indicate shadowing effects and Fermi motion. The x-axis represents the momentum transfer x, with sea quarks and valence quarks indicated. The EMC finding is highlighted with an arrow.
Nuclear parton distributions (per nucleon) if there were no modification

\[A \ u^A = Z \ u^p + N \ u^n, \quad A \ d^A = Z \ d^p + N \ d^n \]

Isospin symmetry: \(u^n = d^p \equiv d \), \(d^n = u^p \equiv u \)

\[\rightarrow u^A = \frac{Z \ u + N \ d}{A}, \quad d^A = \frac{Z \ d + N \ u}{A} \]

Take into accout the nuclear modification by the factors \(w_i(x,A) \)

\[u^A_v(x) = w_{u_v}(x,A) \frac{Z \ u_v(x) + N \ d_v(x)}{A} \]
\[d^A_v(x) = w_{d_v}(x,A) \frac{Z \ d_v(x) + N \ u_v(x)}{A} \]
\[\bar{q}^A(x) = w_{\bar{q}}(x,A) \ \bar{q}(x) \]
\[g^A(x) = w_g(x,A) \ g(x) \]
A dependence

\[R = r_0 A^{1/3} \]

"volume" roughly speaking \[\sigma_A = A \sigma_v + A^{2/3} \sigma_s \]

\[\frac{\sigma_A}{A} = \sigma_v + \frac{1}{A^{1/3}} \sigma_s \]

\[\sim \frac{1}{A^{1/3}} \] dependence

\[\begin{array}{c|cccccc}
F_A/F_D \\
\hline
F_2 & H & e & e & e & e & e \\
0.3 & 0.96 & 0.95 & 0.94 & 0.93 & 0.92 & 0.91 \\
0.4 & 0.96 & 0.95 & 0.94 & 0.93 & 0.92 & 0.91 \\
0.5 & 0.96 & 0.95 & 0.94 & 0.93 & 0.92 & 0.91 \\
0.6 & 0.96 & 0.95 & 0.94 & 0.93 & 0.92 & 0.91 \\
0.7 & 0.96 & 0.95 & 0.94 & 0.93 & 0.92 & 0.91 \\
0.8 & 0.96 & 0.95 & 0.94 & 0.93 & 0.92 & 0.91 \\
0.9 & 0.96 & 0.95 & 0.94 & 0.93 & 0.92 & 0.91 \\
\end{array} \]

\[x = 0.5, Q^2 = 5 \text{ GeV}^2 \]
Functional form of $w_i(x,A)$

$$f_i^A(x) = w_i(x,A) \ f_i(x), \quad i = u, v, d, q, g$$

first, assume the A dependence as $1/A^{1/3}$

then, use

$$w_i(x,A) = 1 + (1 – 1/A^{1/3}) \frac{a_i+b_i x+c_i x^2+d_i x^3}{(1 – x)^{\beta_i}}$$

$a_i, b_i, c_i, d_i, \beta_i$: parameters to be determined by χ^2 analysis

Fermi motion: $\frac{1}{(1 – x)^{\beta_i}} \to \infty$ as $x \to 1$ if $\beta_i > 0$

Shadowing: $w_i(x \to 0, A) = 1 + (1 – 1/A^{1/3}) a_i < 1$

Fine tuning: b_i, c_i, d_i
Constraints

- **Nuclear charge**

\[
Z = A \int dx \left[\frac{2}{3} (u^A - \bar{u}^A) - \frac{1}{3} (d^A - \bar{d}^A) - \frac{1}{3} (s^A - \bar{s}^A) \right]
\]

\[
= A \int dx \left(\frac{2}{3} u_v^A - \frac{1}{3} d_v^A \right)
\]

- **Baryon number**

\[
A = A \int dx \frac{1}{3} (u_v^A + d_v^A)
\]

- **Momentum**

\[
A = A \int dx x (u_v^A + d_v^A + 6 \bar{q}^A + g^A)
\]

Three parameters can be determined by these conditions.
Experimental data

(1) F_2^A / F_2^D
NMC: 4He, Li, C, Ca
SLAC: 4He, Be, C, Al, Ca, Fe, Ag, Au
EMC: C, Ca, Cu, Sn
E665: C, Ca, Xe, Pb
BCDMS: N, Fe
HERMÈSES: 3He, N, Kr

(2) $F_2^A / F_2^{A'}$
NMC: Be / C, Al / C, Ca / C, Fe / C, Sn / C, Pb / C, C / Li, Ca / Li

(3) $\sigma_{DY}^A / \sigma_{DY}^{A'}$
E772: C / D, Ca / D, Fe / D, W / D
E866: Fe / Be, W / Be
Analysis conditions

- parton distributions in the nucleon

 \(\text{MRST01 - LO (}\Lambda_{\text{QCD}}=220 \text{ MeV)} \)

- \(Q^2 \) point at which the parametrized PDFs are defined: \(Q^2 \geq 1 \text{ GeV}^2 \)

- used experimental data: \(Q^2 \geq 1 \text{ GeV}^2 \)

- total number of data: \(1106 \)

 \[761 \left(F_2^A/F_2^D \right) + 293 \left(F_2^A/F_2^{A'} \right) + 52 \text{ (Drell-Yan)} \]

- subroutine for the \(\chi^2 \) analysis: \text{CERN - Minuit}

\[
\chi^2 = \sum_i \frac{\left(R_i^{\text{data}} - R_i^{\text{calc}} \right)^2}{\left(\sigma_i^{\text{data}} \right)^2}
\]

\[
R = \frac{F_2^A}{F_2^D}, \quad \frac{F_2^A}{F_2^{A'}}, \quad \frac{\sigma_{\text{DY}}^{PA}}{\sigma_{\text{DY}}^{PA'}}, \quad \sigma_i^{\text{data}} = \sqrt{\left(\sigma_i^{\text{sys}} \right)^2 + \left(\sigma_i^{\text{stat}} \right)^2}
\]
Analysis results

small nuclei

Be/D

C/D

Preliminary

F_2^{Be} / F_2^{D}

F_2^{C} / F_2^{D}

$Q^2 = 5 \text{ GeV}^2$

\times

NMC

EMC

NMC

E139

E665

preliminary
medium-size nuclei

Ca/D

Fe/D

preliminary

EMC
NMC
E87
E139
E140
E665

Q² = 5 GeV²

preliminary

x

x
large nuclei

Au/D

Pb/D

p_{E139}

$q^2 = 5$ GeV2

pE665

preliminary
\[\frac{F_2^A}{F_2^{A'}} \]

Ca/C

Pb/C

\[Q^2 = 5 \text{ GeV}^2 \]
Drell-Yan

Fe/D

Fe/Be

preliminary

$Q^2 = 50 \text{ GeV}^2$

$\frac{\sigma_{DY}^{Fe}}{\sigma_{DY}^{D}}$

$\frac{\sigma_{DY}^{Be}}{\sigma_{DY}^{Be}}$

\bar{q}^{Fe}/\bar{q}^{D}

$\sigma_{DY}^{Fe}/\sigma_{DY}^{D}$
Nuclear corrections for Ca

\[w(Ca, x) \]

\[Q^2 = 1 \text{ GeV}^2 \]
Comments on Future Experimental Studies of Nuclear PDFs
Valence quark \(\frac{1}{2} [F_3^{\nu N} + F_3^{\nu N}]_{CC} \approx u_\nu + d_\nu \)

- test of shadowing models
 - \(F_3 \) (valence) vs. \(F_2 \) (sea) shadowing
- accurate determination of nuclear PDFs
Studies at hadron facilities

e.g. Drell–Yan: \[x_1 x_2 = \frac{m_{\mu\mu}^2}{s} \]

\[x \approx \frac{\sqrt{m_{\mu\mu}^2}}{\sqrt{s}} \]

- \(s = (p_1 + p_2)^2 \)

RHIC: \(\sqrt{s} = 0.2 \text{ TeV} \)
LHC: \(\sqrt{s} = 5.5 \text{ TeV} \)

- pQCD: \(Q^2 \geq \text{a few GeV}^2 \)

\[x \approx \frac{\sqrt{m_{\mu\mu}^2}}{\sqrt{s}} \geq \frac{1}{200} = 0.005 \text{ RHIC} \]
\[\geq \frac{1}{5500} = 0.0002 \text{ LHC} \]
Antiquark distributions

J-PARC / Fermilab

\(\frac{\sigma_{DY_{Fe}}}{\sigma_{DY_{D}}} \)

\(x \)
Gluon distributions

$w(Ca, x)$

$\begin{array}{c}
gluon \\
eRHIC \\
LHC \\
RHIC
\end{array}$
Summary

(1) χ^2 analysis for the nuclear PDFs

Computer codes could be obtained from http://hs.phys.saga-u.ac.jp/nuclp.html.

(2) Nuclear PDF studies are still premature.

→ analysis refinements
→ experimental efforts:

RHIC, LHC, eRHIC, JPARC, ν factory, …