Bernard Sadoulet
Dept. of Physics /LBNL UC Berkeley
UC Institute for Nuclear and Particle
Astrophysics and Cosmology (INPAC)

The Deep Underground Science and Engineering Laboratory
Site Independent Study

6 Principal Investigators
B. Sadoulet, UC Berkeley
(Astrophysics and Cosmology)
Eugene Beier, U. of Pennsylvania
(Particle Physics)
Hamish Robertson, U. of Washington
(Nuclear Physics)
Charles Fairhurst, U. of Minnesota
(Geology and Engineering)
Tullis C. Onstott, Princeton
(Geomicrobiology)
James Tiedje, Michigan State
(Microbiology)

The process
The science
Infrastructure requirements
The international context
Solicitation 1: Community wide study of
- Scientific roadmap: from Nuclear/Particle/Astro Physics to Geo Physics/Chemistry/Microbiology/Engineering
- Generic infrastructure requirements
Proposal supported by all 8 sites
Approved by NSF (January 05)
PI's went to Washington 28 February to 2 March to clarify goals and time scale

Solicitation 2: Preselection of ≈ 3 sites
- 8 proposals submitted February 28.
- Panel late April. Decisions public by late June

Solicitation 3: Selection of initial site(s)
- MRE and Presidential Budget (09) --> 2011-2015

See www.dusel.org
Solicitation 1 Organization

6 PI's responsible for the study
 in particular scientific quality/ objectivity

14 working groups
 Infrastructure requirements/management
 Education and outreach

2 consultation groups
 • The site consultation group (Solicitation 2 sites)
 • The initiative coordination group: major stakeholders (e.g. National Labs)

3 workshops building on NUSL/NESS
 Berkeley Aug 4-7
 Blacksburg Nov 12-13
 Boulder Jan 5-7

Interim report April 22 before the Sol 2 panel meets
Minneapolis workshop: 22-24 July 05=>Finalize content of report
External review à la NRC
Rolling out workshop in Washington Early Fall 05

Printed report directed at generalists
 Agencies
 OMB/OSTP/Congress cf. Quantum Universe
 +Web based reports with technical facts
 for scientists and programs monitors
Originality of the process

Community-wide Site Independent: Science driven!

Multidisciplinary from the start

Not only physics, astrophysics but Earth sciences, biology, engineering

Internal strategy inside NSF: interest many directorates -> MRE line

NSF=lead agency but involvement of other agencies: DOE (HEP/Nuclear, Basic Sciences), NASA (Astrobiology), NIH, USGS + industry

Adaptive Strategy

This is an experimental science facility, not an observatory

Specifically adaptive strategy to take into account

- The evolution of science
- International environment (available facilities - e.g. SNOLAB, MegaScience coord.)
- Budgetary realities

Excavate as we go ≠ LN Gran Sasso

Potentially multi-sites

Although some advantages of a single site in terms of technical infrastructure and visibility
not necessary provide we have a common management (multi-campus concept)

variety of rock type and geological history
closer to various universities (important for student involvement)

Modules that can be deployed independently (in time or space)

Decoupling of large detector from deep science

($1B-$2B)= mega-science decision taken outside the physics community
Rare Process Physics needs low cosmic-ray rates
Major Questions in Physics

What are the properties of the neutrinos?
Are neutrinos their own antiparticle?
3rd generation of neutrinoless double beta decay. (250kg -> 1 ton)

What is the remaining, and presently unknown, parameters of the neutrino mass matrix? θ_{13}? hierarchy of masses? CP symmetry?

Do protons decay?
Current theories \sim within factor 100 of current limits
$>$ factor 10 possible $=>$ may allow a spectacular discovery!

Immediately related to
• the completion of our understanding of particle and nuclear physics
• the mystery of matter-antimatter asymmetry

Surprises very likely!
Major Questions in Astrophysics

What is the nature of the dark matter in the universe?
- e.g. weakly interacting massive particles (WIMPs)?
- Supersymmetry? Complementary to LHC/ILC.

What is the low-energy spectrum of neutrinos from the sun?
- sun but also fundamental properties of neutrinos.

Neutrinos from Supernovae:
- Long term enterprise for galactic SN!
- Relic SN neutrinos
- Local galaxies <-> Gravitational detectors + optical ≈ 1 day later

Underground accelerator (cf. Luna)
- Nuclear cross sections important for astrophysics and cosmology

Follow on surprises and new ideas
Geoscience: The Ever Changing Earth

Processes taking place in fractured rock masses

- Cracks => Dependence on the physical dimensions and time scale involved.
- In situ investigation of the Hydro-Thermal-Mechanical-Chemical-Biological (HTBCB) interactions at work
- This understanding is critical for a number of problems of great scientific and societal importance
 - ground water flow
 - transport of foreign substances
 - energetic slip on faults and fractures.

Approach the conditions prevalent in the regions where earthquakes naturally occur

help us answer questions such as
 - Earth crust and tectonic plates motions?
 - Onset and propagation of seismic slip on a fault?
 - Prediction of earthquakes?

Requires A deep laboratory, with long term access (>20yr)

Which rock? Initially any kind would be interesting
Eventually all types should be available internationally
igneous, metamorphic and sedimentary (+salt)
Subsurface Engineering

Mastery of the rock

What are the limits to large excavations at depth?
- petroleum boreholes: 10km Ø 10cm
- deepest mine shafts: 4km Ø 5m
- DUSEL experimental areas: 10-60m at a depth between 1 and 3km

Much experience will be gained through the instrumentation and long term monitoring of such cavities at DUSEL.

Technologies to modify rock characteristics e.g. in order to improve recovery: go beyond hydrofracture, role of biotechnologies.

Transparent Earth

Can progress in geophysical sensing and computing methods be applied to make the earth “transparent”, i.e. to “see” real time processes?

Remote sensing methods tested/validated by mining back.

In particular, relationship between surface measurements and subsurface deformations and stresses: important for study of the solid Earth.

Great societal impact

- Large underground constructions
- Groundwater flow,
- Ore /oil recovery methods and mining/boring technology
- Contaminant transport
- Long-term isolation of hazardous and toxic wastes
- Carbon sequestration and hydrocarbon storage underground (sedimentary rock)
A recent breakthrough

Fig. 2 of Earthlab report

S. African data + Onstott et al. 1998
Major Questions in Geomicrobiology

How does the interplay between biology and geology shape the subsurface?
- Role of microbes in HTMCB
 - e.g. dissolution/secretions which may modify slipage or permeability

What fuels the deep biosphere?
- Energy sources ("geogas": H2, CH4, etc.) ≠ photosynthesis?

How to sustain a livelihood in a hostile environment?

How deeply does life extend into the Earth?
- What are the lower limit of the biosphere, imposed by temperature, pressure and energy restrictions?
 - => What fraction does subsurface life represents in the biosphere?

Need for long term access as deep as possible
- Current technology requires horizontal probes (negative pressure to minimize contamination)
- Long term in situ observation and access to the walls
- Deeper bores with remote observation modules
Major Questions in Biology

What can we learn on evolution and genomics?
- Isolated from the surface gene pool for very long periods of time.
- Primitive life processes today?
- How different?
- How do they evolve? Phage?

The role of the underground in the life cycle
- Did life on the earth's surface come from underground?
- Has the subsurface acted as refuge?
 - What signs of subsurface life on Mars?

Is there dark life as we don't know it?
- Unique biochemistry, e.g. non-nucleic acid based? Signatures?

Potential biotechnology and pharmaceutical applications!
- A reservoir for unexpected and biotechnologically useful enzymes?
 - Same requirements as geomicrobiology
 + sequencing and DNA/protein synthetic facilities
Infrastructure Requirements

Adaptive strategy: Not necessarily at the same site!

Depth

Very Deep: \(\geq 6000 \text{ mwe} \)
- unique facility in the world for physics, astrophysics, earth science, biology
- easy access, long-term
 cf. SNOLab

Very Large Caverns (1Mm\(^3\))
- Deeper is better
- Limits by rock, economics
- Hopefully \(>2700\text{mwe} \) (Kamiokande)

Intermediate depths automatic

Rock type

Physics: irrelevant if “competent rock”,
Earth Sciences: Any deep site will yield a
- Eventually multiple rock types (at least internationally)

Pristine rock

Earth science/biology: not dewatered or destressed \(\neq \) Physics

Absolutely pristine for ancient life/life not as we know it
- No water contamination due to site exploration/construction or previous mining
- Variety of physical scales, long time scales
Infrastructure Requirements (2)

Distance from accelerators
Same Megaton detector for proton decay and neutrino long baseline >1000km (1500-2500 km) for neutrinos super-beams @ 3 GeV but new ideas in Europe (low energy beta beam @300MeV, 130km)

Access
Horizontal vs vertical: not a strong discriminator if large hoists 24/7/365 desirable but experiments can be automatized (but IMB experience)
Guaranteed long term access important: 20-30 years
Easy personnel access (including casual and E&O)
Proximity to universities and airport desirable

Safety and specific requirements
Proactive, meeting or exceed codes, MSHA,OSHA
But potentially dangerous experiments: large cryogenic (Ar,He,Ne), fault slippage
If strong scientific motivation, commitment from laboratory to work out adequate safety procedures

Management
Scientific direction
Common management if several sites: multiple campuses
Private ownership: can be financially beneficial, but also bring restrictions in particular long term guarantee, whole spectrum of science
Public ownership: restrictions from other activities
Infrastructure Requirements: Preliminary Conclusion

Passionate discussions in the community.

Significant impact of sites characteristics and institutional arrangements on
- Range and effectiveness of science
- Capital investment
- Operational expenses

What we told S2 panel: Restrictions are not necessarily fatal
- In our multi-site, adaptive approach, not necessary for a site to be able to meet all infrastructure requirements
- Important criterium: Ability of the site to accommodate some frontier science
- Some restrictions may be acceptable for a rapid deployment in a realistic budgetary environment
Preliminary Modules (1)

<table>
<thead>
<tr>
<th>Module</th>
<th>Science</th>
<th>Main Requirements</th>
<th>Potential additional requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Deep module</td>
<td>Double beta decay</td>
<td>6000 m.w.e (2400m in rock)</td>
<td>10kton cryogenic liquids (He, Ne)</td>
</tr>
<tr>
<td></td>
<td>Solar neutrinos</td>
<td>dust control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dark matter</td>
<td>radon control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small geomechanical experiments</td>
<td>low e.m. noise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earthquake studies</td>
<td>pristine rock for microbiology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deepest limits of dark life</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Large Cavern module:</td>
<td>Combination in same detector of</td>
<td>As deep as economically feasible: 1500 m.w.e 1000km from accelerator (see text)</td>
<td>100 kton liquid Ar 100 kton scintillator</td>
</tr>
<tr>
<td>1Mton</td>
<td>Proton decay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long-baseline neutrino physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supernova physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D monitoring of rock deformation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Large Block Earth Science Experiments</td>
<td>HTMCB experiment over multiple correlation lengths</td>
<td>Water bearing zones Pristine and non pristine Span all depth range available at the site</td>
<td>Remote oil deposit simulation (sedimentary rock)</td>
</tr>
<tr>
<td></td>
<td>Imaging technology development, mine-back validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sequestration studies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary Modules (2)

| Intermediate depths | Some solar neutrinos
Radioactive screening
Prototyping
Clean room
Fabrication/assembly
E&O observation deck | Typically
2000-4000 m.w.e.
(800-1600 m in rock) | Accelerator
Shaft experiments
(vertical access or ventilation shafts) |
|----------------------|---|---|---|
| Common underground spaces | Offices and interaction spaces
Teleconference rooms
Small machine and electronics shops | At main underground levels
Excellent internet connectivity | |
| Surface buildings | Experiment specific and common support facilities.
Offices/conference rooms
E&O classrooms | Scale depends on site remoteness
Excellent internet connectivity | |
International Aspects

International Science and Engineering!
- Not only in physics and astronomy
- But also: geo sciences geo-microbiology is a new frontier

DEEP site

Our goal: A frontier facility, unique in the world
- Depth >6000 m.w.e. + intermediate depth
- Full range of science: no restriction of geosciences and biology
- 24/7/365 easy access and long term guarantee 20-30 years
- Expansion capacity and capability to accommodate specific requirements

We are well aware of
- SNOLab approved (6000 m.w.e- INCO Mine).
- Possibility of expansion at Modane (4700 m.w.e. - road tunnel) + Baksan

Strategic advantage of a premier DUSEL on U.S. Territory
- Impact on research of U.S. unified institutional support
- Scattered and isolated effort as guests in other countries
- Initiative capability of U.S. teams and attraction of exciting projects
- Development of new technologies
- Training of the next generation of scientists and engineers + E&O

A difficult task: estimate the worldwide demand in realistic scenarios
- to put in perspective the likely limitations of SNOLab (in spite of INCO’s cooperation)

Intuition: This is the direction science goes
- Chronic over-subscription of existing facilities
- Likely positive feedback: availability will be a factor in the growth of community

We have to check!
International Aspects (2)

Large Detector + Neutrino beam

$1 B price tag => megascience
 part of inter-regional governmental negotiations

Adaptive strategy
Decouple from Deep module
 But a deep site may be a competitive advantage
Science is still evolving rapidly... No real optimization

Get prepared
How can we accelerate the convergence in the U.S.?

2 goals: have the case ready at the time of the decision of the ILC?
 2010/2012?
 ILC type process; Interregional coordination of R&D
 Common CDR and TDR??

 be ready if ILC decision is delayed otherwise the default will
 be HyperK 2013
S1 vs S2/S3

In order not to delay the decision process, some overlap of the 2 processes

S2/S3 is in charge of selection of site(s)
S1 in charge of the scientific case

But strong interest of S1 in fairness/openness of S2 process=> acceptance of the community

Our S1 goal: Maintain the dream alive
Some of us may have to overcome possible discouragement if the selection process is not picking our preferred site/type of sites.

Best road map
Important to participate in Minneapolis workshop

Potential problem: S1 should not be prisoner of S2 process: what if clear incompatibility?
Conclusions

A very interesting process

- Compelling science
- Mutual discoveries of several communities
- Emergence of an exciting set of roadmaps

We are developing powerful arguments!

Even at time of budgetary problems, important to launch new and exciting projects: DUSEL is an excellent candidate!

Still difficult questions
- Realistic estimation of the demand for Deep Site
- How can we converge in next 5 years with proton decay/long baseline neutrinos

<=Progress at this workshop
Science-Methods-Applications

Ever Changing Earth
- Fundamental processes
- Role of microbes
- Tectonics/Seismology

Applications
- Resource discovery and recovery
- Waste management
- Biotechnology

Transparent Earth
- Remote Characterization
- Surface-> subsurface

Overlap is testimony of the richness of the field

Opportunity for multiple advocacy
- NSF-DOE- Congress - Industry
- Experts-other scientists- Public at large