On Sensitivity of Čerenkov Radiation to the Dynamics of High Energy Cosmic Ray Interactions

D. Nosek, IPNP, Charles University

J. Ridky, Institute of Physics, Czech Academy of Sciences
What is the sensitivity of CR data to the interaction dynamics?
QGSJET, SIBYLL, DPMJET, ...
QGP model

Pion momenta generated according to Boltzmann distribution

\[f(p) = \mu \exp(-\mu T) \quad \text{where} \quad T = \frac{p^2 + m^2}{\mu} - m^2 \]

- \(\mu = 170 \text{ MeV}, \) 4 or 8 nucleons melted
 if \(N_{\text{int}} = 19 \sim 21 \)

- \(\mu = 340 \text{ MeV}, \) 4 or 8 nucleons melted
 if \(N_{\text{int}} = 19 \sim 21 \)

J. Ridky, Seattle TAUP 2003
Detection

- underground energetic muons

- on the ground ėrenkov radiation
 our simulated experiment:
 string of 100 detectors
 3 x 3 m²
 10 meters spacing

J. Ridky, Seattle TAUP 2003
$kT = 170 \text{ MeV}$ in CMS

$\langle E_N \rangle \sim 1.25 \text{ GeV}$

$\langle E \rangle \sim 0.6 \text{ GeV}$

$kT = 340 \text{ MeV}$

$\langle E_N \rangle \sim 1.6 \text{ GeV}$

$\langle E \rangle \sim 1.1 \text{ GeV}$

$N_{\text{hot}} = 4$

QGP $\sim 5.7\%$ of s

$N_{\text{hot}} = 8$

J. Ridky, Seattle TAUP 2003

π/N multiplicity, Fermi factor $F \approx s_{NN}^{1/4}$
Ratio of Čerenkov signal \(\gamma/p \) generated by QGSJET & CORSIKA.

J. Ridky, Seattle TAUP 2003
Ratio of Čerenkov signal $\frac{Fe}{p}$
generated by QGSJET & CORSIKA

J. Ridky, Seattle TAUP 2003
Ratio of Čerenkov signal QGP/Fe generated by QGSJET+ melted N_{hot} & CORSIKA.

Lateral profiles of Čerenkov signal QGP and Fe generated by QGSJET+ melted N_{hot} & CORSIKA

J. Ridky, Seattle TAUP 2003
dependence on plasma temperature

J. Ridky, Seattle TAUP 2003
dependence on number of melted nucleons
differences between Fe and QGP signal originate at high altitudes - integrals above given

J. Ridky, Seattle TAUP 2003
differences between Fe and QGP signal originate at high altitudes — differential dependence

J. Ridky, Seattle TAUP 2003
differences seen in whole array and their ratio
primary energy
and
lateral differences
and their ratio

J. Ridky, Seattle TAUP 2003
Cherenkov signal underground

J. Ridky, Seattle TAUP 2003
Conclusions

✓ increased pion production in primary cosmic ray interaction can be detected
✓ the difference in ėerenkov radiation is even bigger then in high energy muon distributions
✓ the difference in ėerenkov radiation increases with primary energy
× QGP does not explain muon bundles