Ups and Downs

Of Soudan 2 data

Tomas Kafka
Tufts University
for the
Soudan 2 Collaboration
Ups and Downs

Of Soudan 2 data

Tomas Kafka
Tufts University

for the
Soudan 2 Collaboration

TAUP03 T. Kafka, Soudan 2 Sept. 2003
Partially Contained Events - the Soudan 2 Saga Continues:

Up to now:

PCE required to have
- either 3 or more prongs, or
- 2 prongs, with non-muon prong having more than 4 hits

Are the rest of PCEs incoming or outgoing?

Uptracks:
- Straight, lightly ionizing track at edge of detector.
- Multiple scattering and/or heavy ionization toward interior end of track.
- Associated hits near the interior end compatible with a decay shower.
- May have > 1 associated Active Shield hit.

InDowns:
- Straight, lightly ionizing track at interior end.
- May but need not to exhibit ranging toward edge of detector.
- Associated hits near interior end compatible with a p or \(\bar{p} \) prong.
- At most 1 associated Active Shield hit.

Ambiguous:
- Cannot tell.
Average number of hits per track:
 \[= 90 \text{ for Uptracks}\]
 \[= 80 \text{ for InDowns}\]
Simulation:

InDowns:
- Part of the FC/PC processing chain.

Uptracks:
- Separate effort.
- Define rock fiducial volume increasing with \(E_n \)
- 4 \(E_n \) bins: 0-10, 10-20, 20-40, 40-70 GeV
- NEUGEN neutrino event generator
- GEANT to propagate through the rock.
- Soudan 2 full detector simulation.
- Same software filter as FC/PC.
- Checkscan all event types.
- Simplification: \(m \) CC only.
- Scanning:
 - single prong
 - up/down/ambiguous
 - no hadronic characteristics
 - length > 100 cm
- Reconstruction
- Cuts:
 \[
 \cos \theta < +0.05 \\
 \text{range} > 260 \text{ g/cm}^2 \text{ (2 \(l_p \))}
 \]

Note: All MC event rates shown here are normalized to data exposure of 5.9 kty.
Event tally:

<table>
<thead>
<tr>
<th>Scanned as</th>
<th>No-osc. MC Truth</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indown</td>
<td>Uptrk</td>
</tr>
<tr>
<td>InDown</td>
<td>16.3±1.6</td>
<td>0.8±0.2</td>
</tr>
<tr>
<td>Uptrk</td>
<td>0.8±0.3</td>
<td>66.4±2.1</td>
</tr>
<tr>
<td>Ambig</td>
<td>1.1±0.2</td>
<td>6.6±0.4</td>
</tr>
</tbody>
</table>
No-osc. MC matches data in shape & rate

\[\cos(\theta_2) > +0.1 \]

No oscillations in Soudan 2 InDowns
No-osc. MC does not match data

see oscillations in Soudan 2 Uptracks

Mitigate against background:

1. **Downgoing muon “sliders”**: veto shield, modest \(\cos \theta_z \) cut

2. **Hadrons (from downgoing muons)**: veto shield, range cut > 2 cm

Hic sunt (leones)

Matter Effects
Uptracks vs. oscillations

MC with □ oscillations, \(\sin^2 2\theta = 1 \), but no matter effects

□ Uptracks prefer lowish □\(\Delta m^2 \)
Uptracks: $\cos \theta_z < -0.1$

InDowns: $\cos \theta_z > +0.1$
Conclusion:

Soudan 2 Uptracks and InDowns bracket

\[2.5 \times 10^{-4} < \Delta m^2 < 10^{-2} \text{ eV}^2 \]

with slight preference for lower values.

Plans:

- Investigate backgrounds;
- Implement matter effects in MC;
- Incorporate into the overall Soudan 2 likelihood fit.